* [PATCH 00/21] e1000 code cleanup and iNVM support
@ 2016-05-31 17:09 Andrey Smirnov
2016-05-31 17:09 ` [PATCH 01/21] e1000: Split driver into multiple files Andrey Smirnov
` (20 more replies)
0 siblings, 21 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Hi everyone,
First part of this patchset is code cleanups and bug fixes that I made when
adding support for iNVM and NOR flash (latter is not included in the
patchset) read/write functionality.
Second part (namely the last patch in the series) add support for
accessig on-chip OTP on i210 network card (called iNVM by the vendor)
via character device.
Any comments/feedback is wellcome!
Thank you,
Andrey Smirnov
Andrey Smirnov (21):
e1000: Split driver into multiple files
e1000: Include <net.h> in e1000.h
e1000: Convert E1000_*_REG macros to functions
e1000: Fix a bug in e1000_detect_gig_phy
e1000: Remove unnecessary variable
e1000: Do not read same register twice
e1000: Remove unneeded i210 specific register code
e1000: Consolidate register offset fixups
e1000: Remove 'use_eewr' parameter
e1000: Remove 'page_size'
e1000: Simplify EEPROM init for e1000_80003es2lan
e1000: Simplify EEPROM init for e1000_igb
e1000: Consolidate SPI EEPROM init code
e1000: Consolidate Microwire EEPROM init code
e1000: Fix a bug in e1000_probe()
e1000: Remove unnecessary intialization
e1000: Refactor Flash/EEPROM reading code
e1000: Properly release SW_FW_SYNC semaphore bits
e1000: Add EEPROM access locking for i210
e1000: Add a "poll register" function
e1000: Expose i210's iNVM as a cdev
drivers/net/Makefile | 2 +-
drivers/net/e1000.c | 4455 --------------------------------------------
drivers/net/e1000.h | 2093 ---------------------
drivers/net/e1000/e1000.h | 2182 ++++++++++++++++++++++
drivers/net/e1000/eeprom.c | 1087 +++++++++++
drivers/net/e1000/main.c | 3696 ++++++++++++++++++++++++++++++++++++
drivers/net/e1000/regio.c | 71 +
7 files changed, 7037 insertions(+), 6549 deletions(-)
delete mode 100644 drivers/net/e1000.c
delete mode 100644 drivers/net/e1000.h
create mode 100644 drivers/net/e1000/e1000.h
create mode 100644 drivers/net/e1000/eeprom.c
create mode 100644 drivers/net/e1000/main.c
create mode 100644 drivers/net/e1000/regio.c
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 01/21] e1000: Split driver into multiple files
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 02/21] e1000: Include <net.h> in e1000.h Andrey Smirnov
` (19 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
The driver has a number of not very tightly coupled subsystems and at
4K+ lines e1000.c is getting rather hard to wrangle, so let's move
EEPROM handling code (very self contained susbsystem) into a separate
file and put all of the driver into a dedicated subdirectory.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/Makefile | 2 +-
drivers/net/e1000.c | 4455 --------------------------------------------
drivers/net/e1000.h | 2093 ---------------------
drivers/net/e1000/e1000.h | 2139 +++++++++++++++++++++
drivers/net/e1000/eeprom.c | 747 ++++++++
drivers/net/e1000/main.c | 3681 ++++++++++++++++++++++++++++++++++++
6 files changed, 6568 insertions(+), 6549 deletions(-)
delete mode 100644 drivers/net/e1000.c
delete mode 100644 drivers/net/e1000.h
create mode 100644 drivers/net/e1000/e1000.h
create mode 100644 drivers/net/e1000/eeprom.c
create mode 100644 drivers/net/e1000/main.c
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index f53cb80..08166d2 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -10,7 +10,7 @@ obj-$(CONFIG_DRIVER_NET_CPSW) += cpsw.o
obj-$(CONFIG_DRIVER_NET_DAVINCI_EMAC) += davinci_emac.o
obj-$(CONFIG_DRIVER_NET_DESIGNWARE) += designware.o
obj-$(CONFIG_DRIVER_NET_DM9K) += dm9k.o
-obj-$(CONFIG_DRIVER_NET_E1000) += e1000.o
+obj-$(CONFIG_DRIVER_NET_E1000) += e1000/main.o e1000/eeprom.o
obj-$(CONFIG_DRIVER_NET_ENC28J60) += enc28j60.o
obj-$(CONFIG_DRIVER_NET_EP93XX) += ep93xx.o
obj-$(CONFIG_DRIVER_NET_ETHOC) += ethoc.o
diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c
deleted file mode 100644
index a7acfd0..0000000
--- a/drivers/net/e1000.c
+++ /dev/null
@@ -1,4455 +0,0 @@
-/**************************************************************************
-Intel Pro 1000 for ppcboot/das-u-boot
-Drivers are port from Intel's Linux driver e1000-4.3.15
-and from Etherboot pro 1000 driver by mrakes at vivato dot net
-tested on both gig copper and gig fiber boards
-***************************************************************************/
-/*******************************************************************************
-
-
- Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
-
- * SPDX-License-Identifier: GPL-2.0+
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-/*
- * Copyright (C) Archway Digital Solutions.
- *
- * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
- * 2/9/2002
- *
- * Copyright (C) Linux Networx.
- * Massive upgrade to work with the new intel gigabit NICs.
- * <ebiederman at lnxi dot com>
- *
- * Copyright 2011 Freescale Semiconductor, Inc.
- */
-
-#include <common.h>
-#include <init.h>
-#include <net.h>
-#include <malloc.h>
-#include <linux/pci.h>
-#include <dma.h>
-#include "e1000.h"
-
-static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr)
-{
- return (u32)adr;
-}
-
-#define PCI_VENDOR_ID_INTEL 0x8086
-
-struct e1000_hw {
- struct eth_device edev;
-
- struct pci_dev *pdev;
- struct device_d *dev;
-
- void __iomem *hw_addr;
-
- e1000_mac_type mac_type;
- e1000_phy_type phy_type;
- uint32_t txd_cmd;
- e1000_media_type media_type;
- e1000_fc_type fc;
- struct e1000_eeprom_info eeprom;
- uint32_t phy_id;
- uint32_t phy_revision;
- uint32_t original_fc;
- uint32_t autoneg_failed;
- uint16_t autoneg_advertised;
- uint16_t pci_cmd_word;
- uint16_t device_id;
- uint16_t vendor_id;
- uint8_t revision_id;
- struct mii_bus miibus;
-
- struct e1000_tx_desc *tx_base;
- struct e1000_rx_desc *rx_base;
- unsigned char *packet;
-
- int tx_tail;
- int rx_tail, rx_last;
-};
-
-/* Function forward declarations */
-static int e1000_setup_link(struct e1000_hw *hw);
-static int e1000_setup_fiber_link(struct e1000_hw *hw);
-static int e1000_setup_copper_link(struct e1000_hw *hw);
-static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
-static void e1000_config_collision_dist(struct e1000_hw *hw);
-static int e1000_config_mac_to_phy(struct e1000_hw *hw);
-static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
-static int e1000_wait_autoneg(struct e1000_hw *hw);
-static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
- uint16_t *duplex);
-static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
- uint16_t *phy_data);
-static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
- uint16_t phy_data);
-static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
-static int e1000_phy_reset(struct e1000_hw *hw);
-static int e1000_detect_gig_phy(struct e1000_hw *hw);
-static void e1000_set_media_type(struct e1000_hw *hw);
-
-static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
-static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
-
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
- uint16_t words,
- uint16_t *data);
-
-static bool e1000_media_copper(struct e1000_hw *hw)
-{
- if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
- return 1;
-
- return hw->media_type == e1000_media_type_copper;
-}
-
-static bool e1000_media_fiber(struct e1000_hw *hw)
-{
- if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
- return 0;
-
- return hw->media_type == e1000_media_type_fiber;
-}
-
-static bool e1000_media_fiber_serdes(struct e1000_hw *hw)
-{
- if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
- return 0;
-
- return hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
-{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(50);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
-{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(50);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
-{
- uint32_t eecd;
- uint32_t mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- udelay(50);
-
- e1000_raise_ee_clk(hw, &eecd);
- e1000_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while (mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
-{
- uint32_t eecd;
- uint32_t i;
- uint16_t data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the
- * value of the "DO" bit. During this "shifting in" process the
- * "DI" bit should always be clear.
- */
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data = data << 1;
- e1000_raise_ee_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_ee_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_standby_eeprom(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(eeprom->delay_usec);
- }
-}
-
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
-{
- uint32_t eecd = 0;
-
- DEBUGFUNC();
-
- if (hw->mac_type == e1000_ich8lan)
- return false;
-
- if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
-
- /* If both bits are set, device is Flash type */
- if (eecd == 0x03)
- return false;
- }
- return true;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i = 0;
-
- DEBUGFUNC();
-
- if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Request EEPROM Access */
- if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 &&
- hw->mac_type != e1000_82574) {
- eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- udelay(5);
- eecd = E1000_READ_REG(hw, EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- dev_dbg(hw->dev, "Could not acquire EEPROM grant\n");
- return -E1000_ERR_EEPROM;
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == e1000_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- udelay(1);
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured. Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- int32_t ret_val = E1000_SUCCESS;
- uint16_t eeprom_size;
-
- if (hw->mac_type == e1000_igb)
- eecd = E1000_READ_REG(hw, I210_EECD);
- else
- eecd = E1000_READ_REG(hw, EECD);
-
- DEBUGFUNC();
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82571:
- case e1000_82572:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82573:
- case e1000_82574:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- if (e1000_is_onboard_nvm_eeprom(hw) == false) {
- eeprom->use_eerd = true;
- eeprom->use_eewr = true;
-
- eeprom->type = e1000_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
- break;
- case e1000_80003es2lan:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = true;
- eeprom->use_eewr = false;
- break;
- case e1000_igb:
- /* i210 has 4k of iNVM mapped as EEPROM */
- eeprom->type = e1000_eeprom_invm;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- eeprom->use_eerd = true;
- eeprom->use_eewr = false;
- break;
- default:
- break;
- }
-
- if (eeprom->type == e1000_eeprom_spi ||
- eeprom->type == e1000_eeprom_invm) {
- /* eeprom_size will be an enum [0..8] that maps
- * to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if (hw->mac_type <= e1000_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
- &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
- >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier
- * hardware, so we bump eeprom_size up one to
- * ensure that "1" (which maps to 256B) is never
- * the result used in the shifting logic below. */
- if (eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (uint16_t)((eecd &
- E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
-{
- uint32_t attempts = 100000;
- uint32_t i, reg = 0;
- int32_t done = E1000_ERR_EEPROM;
-
- for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ) {
- if (hw->mac_type == e1000_igb)
- reg = E1000_READ_REG(hw, I210_EERD);
- else
- reg = E1000_READ_REG(hw, EERD);
- } else {
- if (hw->mac_type == e1000_igb)
- reg = E1000_READ_REG(hw, I210_EEWR);
- else
- reg = E1000_READ_REG(hw, EEWR);
- }
-
- if (reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- udelay(5);
- }
-
- return done;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t i, eerd = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
-
- if (hw->mac_type == e1000_igb)
- E1000_WRITE_REG(hw, I210_EERD, eerd);
- else
- E1000_WRITE_REG(hw, EERD, eerd);
-
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if (error)
- break;
-
- if (hw->mac_type == e1000_igb) {
- data[i] = (E1000_READ_REG(hw, I210_EERD) >>
- E1000_EEPROM_RW_REG_DATA);
- } else {
- data[i] = (E1000_READ_REG(hw, EERD) >>
- E1000_EEPROM_RW_REG_DATA);
- }
-
- }
-
- return error;
-}
-
-static void e1000_release_eeprom(struct e1000_hw *hw)
-{
- uint32_t eecd;
-
- DEBUGFUNC();
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->eeprom.type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- udelay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- udelay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if (hw->mac_type > e1000_82544) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
-}
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw)
-{
- uint16_t retry_count = 0;
- uint8_t spi_stat_reg;
-
- DEBUGFUNC();
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- udelay(5);
- retry_count += 5;
-
- e1000_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- dev_dbg(hw->dev, "SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- *****************************************************************************/
-static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
-
- DEBUGFUNC();
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= eeprom->word_size) ||
- (words > eeprom->word_size - offset) ||
- (words == 0)) {
- dev_dbg(hw->dev, "\"words\" parameter out of bounds."
- "Words = %d, size = %d\n", offset, eeprom->word_size);
- return -E1000_ERR_EEPROM;
- }
-
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- if (e1000_is_onboard_nvm_eeprom(hw) == true &&
- hw->eeprom.use_eerd == false) {
-
- /* Prepare the EEPROM for bit-bang reading */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Eerd register EEPROM access requires no eeprom aquire/release */
- if (eeprom->use_eerd == true)
- return e1000_read_eeprom_eerd(hw, offset, words, data);
-
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should relase it */
- if (eeprom->type == e1000_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (e1000_spi_eeprom_ready(hw)) {
- e1000_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- e1000_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in
- * the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
- eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally
- * increments with each byte (spi) being read, saving on the
- * overhead of eeprom setup and tear-down. The address
- * counter will roll over if reading beyond the size of
- * the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == e1000_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw,
- EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires
- * the overhead of eeprom setup and tear-down. */
- data[i] = e1000_shift_in_ee_bits(hw, 16);
- e1000_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- e1000_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
-{
- uint16_t i, checksum, checksum_reg;
- uint16_t buf[EEPROM_CHECKSUM_REG + 1];
-
- DEBUGFUNC();
-
- /* Read the EEPROM */
- if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
- dev_err(&hw->edev.dev, "Unable to read EEPROM!\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Compute the checksum */
- checksum = 0;
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
- checksum += buf[i];
- checksum = ((uint16_t)EEPROM_SUM) - checksum;
- checksum_reg = buf[i];
-
- /* Verify it! */
- if (checksum == checksum_reg)
- return 0;
-
- /* Hrm, verification failed, print an error */
- dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n");
- dev_err(&hw->edev.dev, " ...register was 0x%04hx, calculated 0x%04hx\n",
- checksum_reg, checksum);
-
- return -E1000_ERR_EEPROM;
-}
-
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t e1000_set_phy_mode(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC();
-
- if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) {
- ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
- 1, &eeprom_data);
- if (ret_val)
- return ret_val;
-
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_PHY_PAGE_SELECT, 0x000B);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_PHY_GEN_CONTROL, 0x8104);
- if (ret_val)
- return ret_val;
- }
- }
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t e1000_get_software_semaphore(struct e1000_hw *hw)
-{
- int32_t timeout = hw->eeprom.word_size + 1;
- uint32_t swsm;
-
- DEBUGFUNC();
-
- swsm = E1000_READ_REG(hw, SWSM);
- swsm &= ~E1000_SWSM_SMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
-
- if (hw->mac_type != e1000_80003es2lan)
- return E1000_SUCCESS;
-
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- /* If SMBI bit cleared, it is now set and we hold
- * the semaphore */
- if (!(swsm & E1000_SWSM_SMBI))
- return 0;
- mdelay(1);
- timeout--;
- }
-
- dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_RESET;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
- uint32_t swsm;
-
- swsm = E1000_READ_REG(hw, SWSM);
-
- if (hw->mac_type == e1000_80003es2lan)
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- else
- swsm &= ~(E1000_SWSM_SWESMBI);
-
- E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
- int32_t timeout;
- uint32_t swsm;
-
- if (hw->mac_type == e1000_80003es2lan) {
- /* Get the SW semaphore. */
- if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
- if (swsm & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- timeout--;
- }
-
- if (!timeout) {
- /* Release semaphores */
- e1000_put_hw_eeprom_semaphore(hw);
- dev_dbg(hw->dev, "Driver can't access the Eeprom - "
- "SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
- return E1000_SUCCESS;
-}
-
-static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
-{
- uint32_t swfw_sync = 0;
- uint32_t swmask = mask;
- uint32_t fwmask = mask << 16;
- int32_t timeout = 200;
-
- DEBUGFUNC();
- while (timeout) {
- if (e1000_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /* firmware currently using resource (fwmask) */
- /* or other software thread currently using resource (swmask) */
- e1000_put_hw_eeprom_semaphore(hw);
- mdelay(5);
- timeout--;
- }
-
- if (!timeout) {
- dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_eeprom_semaphore(hw);
- return E1000_SUCCESS;
-}
-
-static bool e1000_is_second_port(struct e1000_hw *hw)
-{
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- case e1000_82546:
- case e1000_82571:
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
- return true;
- /* Fallthrough */
- default:
- return false;
- }
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * edev - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr)
-{
- struct e1000_hw *hw = edev->priv;
- uint16_t eeprom_data;
- uint32_t reg_data = 0;
- int i;
-
- DEBUGFUNC();
-
- if (hw->mac_type == e1000_igb) {
- /* i210 preloads MAC address into RAL/RAH registers */
- reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
- adr[0] = reg_data & 0xff;
- adr[1] = (reg_data >> 8) & 0xff;
- adr[2] = (reg_data >> 16) & 0xff;
- adr[3] = (reg_data >> 24) & 0xff;
- reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
- adr[4] = reg_data & 0xff;
- adr[5] = (reg_data >> 8) & 0xff;
- return 0;
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) {
- dev_dbg(hw->dev, "EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- adr[i] = eeprom_data & 0xff;
- adr[i + 1] = (eeprom_data >> 8) & 0xff;
- }
-
- /* Invert the last bit if this is the second device */
- if (e1000_is_second_port(hw))
- adr[5] ^= 1;
-
- return 0;
-}
-
-static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr)
-{
- struct e1000_hw *hw = edev->priv;
- uint32_t addr_low;
- uint32_t addr_high;
-
- DEBUGFUNC();
-
- dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n");
-
- addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24));
- addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV);
-
- E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
- E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
-
- return 0;
-}
-
-/******************************************************************************
- * Clears the VLAN filter table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_clear_vfta(struct e1000_hw *hw)
-{
- uint32_t offset;
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t e1000_set_mac_type(struct e1000_hw *hw)
-{
- DEBUGFUNC();
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = e1000_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = e1000_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = e1000_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = e1000_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = e1000_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = e1000_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = e1000_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = e1000_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- hw->mac_type = e1000_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- hw->mac_type = e1000_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = e1000_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = e1000_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = e1000_82547_rev_2;
- break;
- case E1000_DEV_ID_82571EB_COPPER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
- hw->mac_type = e1000_82571;
- break;
- case E1000_DEV_ID_82572EI_COPPER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82572EI:
- hw->mac_type = e1000_82572;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- case E1000_DEV_ID_82573L:
- hw->mac_type = e1000_82573;
- break;
- case E1000_DEV_ID_82574L:
- hw->mac_type = e1000_82574;
- break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
- case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->mac_type = e1000_80003es2lan;
- break;
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IFE_GT:
- case E1000_DEV_ID_ICH8_IFE_G:
- case E1000_DEV_ID_ICH8_IGP_M:
- hw->mac_type = e1000_ich8lan;
- break;
- case E1000_DEV_ID_I350_COPPER:
- case E1000_DEV_ID_I210_UNPROGRAMMED:
- case E1000_DEV_ID_I211_UNPROGRAMMED:
- case E1000_DEV_ID_I210_COPPER:
- case E1000_DEV_ID_I211_COPPER:
- case E1000_DEV_ID_I210_COPPER_FLASHLESS:
- case E1000_DEV_ID_I210_SERDES:
- case E1000_DEV_ID_I210_SERDES_FLASHLESS:
- case E1000_DEV_ID_I210_1000BASEKX:
- hw->mac_type = e1000_igb;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_reset_hw(struct e1000_hw *hw)
-{
- uint32_t ctrl;
- uint32_t reg;
-
- DEBUGFUNC();
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
- pci_write_config_word(hw->pdev, PCI_COMMAND,
- hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
- }
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- mdelay(10);
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- dev_dbg(hw->dev, "Issuing a global reset to MAC\n");
- ctrl = E1000_READ_REG(hw, CTRL);
-
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-
- /* Force a reload from the EEPROM if necessary */
- if (hw->mac_type == e1000_igb) {
- mdelay(20);
- reg = E1000_READ_REG(hw, STATUS);
- if (reg & E1000_STATUS_PF_RST_DONE)
- dev_dbg(hw->dev, "PF OK\n");
- reg = E1000_READ_REG(hw, I210_EECD);
- if (reg & E1000_EECD_AUTO_RD)
- dev_dbg(hw->dev, "EEC OK\n");
- } else if (hw->mac_type < e1000_82540) {
- uint32_t ctrl_ext;
-
- /* Wait for reset to complete */
- udelay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* Wait for EEPROM reload */
- mdelay(2);
- } else {
- uint32_t manc;
-
- /* Wait for EEPROM reload (it happens automatically) */
- mdelay(4);
- /* Dissable HW ARPs on ASF enabled adapters */
- manc = E1000_READ_REG(hw, MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- if (hw->mac_type == e1000_igb)
- E1000_WRITE_REG(hw, I210_IAM, 0);
-
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- E1000_READ_REG(hw, ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == e1000_82542_rev2_0)
- pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
-
- if (hw->mac_type != e1000_igb) {
- if (hw->mac_type < e1000_82571)
- E1000_WRITE_REG(hw, PBA, 0x00000030);
- else
- E1000_WRITE_REG(hw, PBA, 0x000a0026);
- }
-}
-
-/******************************************************************************
- *
- * Initialize a number of hardware-dependent bits
- *
- * hw: Struct containing variables accessed by shared code
- *
- * This function contains hardware limitation workarounds for PCI-E adapters
- *
- *****************************************************************************/
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
-{
- uint32_t reg_ctrl, reg_ctrl_ext;
- uint32_t reg_tarc0, reg_tarc1;
- uint32_t reg_txdctl, reg_txdctl1;
-
- if (hw->mac_type < e1000_82571)
- return;
-
- /* Settings common to all PCI-express silicon */
-
- /* link autonegotiation/sync workarounds */
- reg_tarc0 = E1000_READ_REG(hw, TARC0);
- reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27));
-
- /* Enable not-done TX descriptor counting */
- reg_txdctl = E1000_READ_REG(hw, TXDCTL);
- reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
- E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
-
- reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
- reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
- E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
-
- switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- /* Clear PHY TX compatible mode bits */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- reg_tarc1 &= ~((1 << 30) | (1 << 29));
-
- /* link autonegotiation/sync workarounds */
- reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23);
-
- /* TX ring control fixes */
- reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24);
-
- /* Multiple read bit is reversed polarity */
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- case e1000_82573:
- case e1000_82574:
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- reg_ctrl_ext &= ~(1 << 23);
- reg_ctrl_ext |= (1 << 22);
-
- /* TX byte count fix */
- reg_ctrl = E1000_READ_REG(hw, CTRL);
- reg_ctrl &= ~(1 << 29);
-
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
- E1000_WRITE_REG(hw, CTRL, reg_ctrl);
- break;
- case e1000_80003es2lan:
- /* improve small packet performace for fiber/serdes */
- if (e1000_media_fiber_serdes(hw))
- reg_tarc0 &= ~(1 << 20);
-
- /* Multiple read bit is reversed polarity */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- case e1000_ich8lan:
- /* Reduce concurrent DMA requests to 3 from 4 */
- if ((hw->revision_id < 3) ||
- ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
- (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
- reg_tarc0 |= (1 << 29) | (1 << 28);
-
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- reg_ctrl_ext |= (1 << 22);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
-
- /* workaround TX hang with TSO=on */
- reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23);
-
- /* Multiple read bit is reversed polarity */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- /* workaround TX hang with TSO=on */
- reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24);
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- case e1000_igb:
- return;
- default:
- break;
- }
-
- E1000_WRITE_REG(hw, TARC0, reg_tarc0);
-}
-
-static int e1000_open(struct eth_device *edev)
-{
- struct e1000_hw *hw = edev->priv;
- uint32_t ctrl_ext;
- int32_t ret_val;
- uint32_t ctrl;
- uint32_t reg_data;
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = e1000_setup_link(hw);
- if (ret_val)
- return ret_val;
-
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > e1000_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
- ctrl &= ~E1000_TXDCTL_WTHRESH;
- ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
- }
-
- /* Set the receive descriptor write back policy */
- if (hw->mac_type >= e1000_82571) {
- ctrl = E1000_READ_REG(hw, RXDCTL);
- ctrl &= ~E1000_RXDCTL_WTHRESH;
- ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB;
- E1000_WRITE_REG(hw, RXDCTL, ctrl);
- }
-
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- /* Enable retransmit on late collisions */
- reg_data = E1000_READ_REG(hw, TCTL);
- reg_data |= E1000_TCTL_RTLC;
- E1000_WRITE_REG(hw, TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = E1000_READ_REG(hw, TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
- E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = E1000_READ_REG(hw, TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
- /* Fall through */
- case e1000_82571:
- case e1000_82572:
- case e1000_ich8lan:
- ctrl = E1000_READ_REG(hw, TXDCTL1);
- ctrl &= ~E1000_TXDCTL_WTHRESH;
- ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL1, ctrl);
- break;
- case e1000_82573:
- case e1000_82574:
- reg_data = E1000_READ_REG(hw, GCR);
- reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- E1000_WRITE_REG(hw, GCR, reg_data);
- case e1000_igb:
- default:
- break;
- }
-
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot. */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return 0;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-static int e1000_setup_link(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint32_t ctrl_ext;
- uint16_t eeprom_data;
-
- DEBUGFUNC();
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not have to set it up again. */
- if (e1000_check_phy_reset_block(hw))
- return E1000_SUCCESS;
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
- &eeprom_data) < 0) {
- dev_dbg(hw->dev, "EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- switch (hw->mac_type) {
- case e1000_ich8lan:
- case e1000_82573:
- case e1000_82574:
- case e1000_igb:
- hw->fc = e1000_fc_full;
- break;
- default:
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
- if (ret_val) {
- dev_dbg(hw->dev, "EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = e1000_fc_none;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
- hw->fc = e1000_fc_tx_pause;
- else
- hw->fc = e1000_fc_full;
- break;
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == e1000_82542_rev2_0)
- hw->fc &= ~e1000_fc_tx_pause;
-
- hw->original_fc = hw->fc;
-
- dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before e1000_setup_pcs_link()
- * or e1000_phy_setup() is called.
- */
- if (hw->mac_type == e1000_82543) {
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- if (e1000_media_fiber(hw))
- ret_val = e1000_setup_fiber_link(hw);
- else
- ret_val = e1000_setup_copper_link(hw);
-
- if (ret_val < 0)
- return ret_val;
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n");
-
- /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
- if (hw->mac_type != e1000_ich8lan) {
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- }
-
- E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc & e1000_fc_tx_pause) {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
- E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH);
- } else {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
- }
-
- return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int e1000_setup_fiber_link(struct e1000_hw *hw)
-{
- uint32_t ctrl;
- uint32_t status;
- uint32_t txcw = 0;
- uint32_t i;
- uint32_t signal;
-
- DEBUGFUNC();
-
- /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
- signal = E1000_CTRL_SWDPIN1;
- else
- signal = 0;
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- e1000_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case e1000_fc_none:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = E1000_TXCW_ANE | E1000_TXCW_FD;
- break;
- case e1000_fc_rx_pause:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
- break;
- case e1000_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR;
- break;
- case e1000_fc_full:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
- break;
- default:
- dev_dbg(hw->dev, "Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw);
-
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- mdelay(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- */
- if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- dev_dbg(hw->dev, "Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- mdelay(10);
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- /* AutoNeg failed to achieve a link, so we'll call
- * e1000_check_for_link. This routine will force the link up if we
- * detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- return -E1000_ERR_NOLINK;
- } else {
- hw->autoneg_failed = 0;
- dev_dbg(hw->dev, "Valid Link Found\n");
- }
- } else {
- dev_dbg(hw->dev, "No Signal Detected\n");
- return -E1000_ERR_NOLINK;
- }
- return 0;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC();
-
- ctrl = E1000_READ_REG(hw, CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > e1000_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
- | E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = e1000_detect_gig_phy(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error, did not detect valid phy.\n");
- return ret_val;
- }
- dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = e1000_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82545_rev_3) ||
- (hw->mac_type == e1000_82546_rev_3)) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
-{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC();
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used
- * for Dx transitions and states */
- if (hw->mac_type == e1000_82541_rev_2
- || hw->mac_type == e1000_82547_rev_2) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->mac_type == e1000_ich8lan) {
- /* MAC writes into PHY register based on the state transition
- * and start auto-negotiation. SW driver can overwrite the
- * settings in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
- ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = e1000_write_phy_reg(hw,
- IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
-{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC();
-
- if (hw->mac_type <= e1000_82547_rev_2)
- return E1000_SUCCESS;
-
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else if (hw->mac_type == e1000_igb) {
- phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
- } else {
- ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
-
- ret_val = e1000_write_phy_reg(hw,
- IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for e1000_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw)
-{
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC();
-
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- mdelay(15);
- if (hw->mac_type != e1000_ich8lan) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == e1000_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = e1000_set_d3_lplu_state_off(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* disable lplu d0 during driver init */
- ret_val = e1000_set_d0_lplu_state_off(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Disabling LPLU D0\n");
- return ret_val;
- }
-
- /* Configure mdi-mdix settings */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
- | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- } else {
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- }
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns - true when the mode is IAMT or false.
- ****************************************************************************/
-static bool e1000_check_mng_mode(struct e1000_hw *hw)
-{
- uint32_t fwsm;
-
- DEBUGFUNC();
-
- fwsm = E1000_READ_REG(hw, FWSM);
-
- if (hw->mac_type == e1000_ich8lan) {
- if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return true;
- } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return true;
-
- return false;
-}
-
-static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
-{
- uint16_t swfw = E1000_SWFW_PHY0_SM;
- uint32_t reg_val;
- DEBUGFUNC();
-
- if (e1000_is_second_port(hw))
- swfw = E1000_SWFW_PHY1_SM;
-
- if (e1000_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
- & E1000_KUMCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- udelay(2);
-
- return E1000_SUCCESS;
-}
-
-static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
-{
- uint16_t swfw = E1000_SWFW_PHY0_SM;
- uint32_t reg_val;
- DEBUGFUNC();
-
- if (e1000_is_second_port(hw))
- swfw = E1000_SWFW_PHY1_SM;
-
- if (e1000_swfw_sync_acquire(hw, swfw)) {
- debug("%s[%i]\n", __func__, __LINE__);
- return -E1000_ERR_SWFW_SYNC;
- }
-
- /* Write register address */
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- udelay(2);
-
- /* Read the data returned */
- reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
- *data = (uint16_t)reg_val;
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for e1000_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
- uint32_t reg_data;
-
- DEBUGFUNC();
-
- /* Enable CRS on TX for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw,
- GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
- phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
- ret_val = e1000_write_phy_reg(hw,
- GG82563_PHY_MAC_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Bypass RX and TX FIFO's */
- ret_val = e1000_write_kmrn_reg(hw,
- E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
- | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
- if (ret_val)
- return ret_val;
-
- reg_data = E1000_READ_REG(hw, CTRL_EXT);
- reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (e1000_check_mng_mode(hw) == false) {
- /* Enable Electrical Idle on the PHY */
- phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = e1000_write_phy_reg(hw,
- GG82563_PHY_PWR_MGMT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw,
- GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1000_write_phy_reg(hw,
- GG82563_PHY_KMRN_MODE_CTRL, phy_data);
-
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= GG82563_ICR_DIS_PADDING;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for e1000_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC();
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1000_read_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
- | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
- | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC();
-
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* IFE phy only supports 10/100 */
- if (hw->phy_type == e1000_phy_ife)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
- dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- dev_dbg(hw->dev, "Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC();
-
- if (hw->mac_type >= e1000_82544) {
- e1000_config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- dev_dbg(hw->dev, "Error Configuring Flow Control\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int e1000_setup_copper_link(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
- uint16_t reg_data;
-
- DEBUGFUNC();
-
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- case e1000_ich8lan:
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps. */
- ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
- if (ret_val)
- return ret_val;
-
- reg_data |= 0x3F;
-
- ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
- default:
- break;
- }
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = e1000_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- /* Kumeran registers are written-only */
- reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
- reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) {
- ret_val = e1000_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) {
- ret_val = e1000_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_gg82563) {
- ret_val = e1000_copper_link_ggp_setup(hw);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = e1000_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
-
- dev_dbg(hw->dev, "Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- udelay(10);
- }
-
- dev_dbg(hw->dev, "Unable to establish link!!!\n");
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_autoneg_adv_reg;
- uint16_t mii_1000t_ctrl_reg;
-
- DEBUGFUNC();
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type != e1000_phy_ife) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
- &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- } else
- mii_1000t_ctrl_reg = 0;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- dev_dbg(hw->dev, "Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- dev_dbg(hw->dev, "Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- dev_dbg(hw->dev, "Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- dev_dbg(hw->dev, "Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- pr_debug
- ("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case e1000_fc_none: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- dev_dbg(hw->dev, "Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (hw->phy_type != e1000_phy_ife) {
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-static void e1000_config_collision_dist(struct e1000_hw *hw)
-{
- uint32_t tctl, coll_dist;
-
- DEBUGFUNC();
-
- if (hw->mac_type < e1000_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
-
- tctl = E1000_READ_REG(hw, TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int e1000_config_mac_to_phy(struct e1000_hw *hw)
-{
- uint32_t ctrl;
- uint16_t phy_data;
-
- DEBUGFUNC();
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_ILOS);
- ctrl |= (E1000_CTRL_SPD_SEL);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
- dev_dbg(hw->dev, "PHY Read Error\n");
- return -E1000_ERR_PHY;
- }
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- e1000_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return 0;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-static int e1000_force_mac_fc(struct e1000_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC();
-
- /* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- dev_dbg(hw->dev, "Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == e1000_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return 0;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t mii_nway_adv_reg;
- uint16_t mii_nway_lp_ability_reg;
- uint16_t speed;
- uint16_t duplex;
-
- DEBUGFUNC();
-
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
- dev_dbg(hw->dev, "PHY Read Error \n");
- return -E1000_ERR_PHY;
- }
-
- if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
- dev_dbg(hw->dev, "PHY Read Error \n");
- return -E1000_ERR_PHY;
- }
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n");
- return 0;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
- dev_dbg(hw->dev, "PHY Read Error\n");
- return -E1000_ERR_PHY;
- }
-
- if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
- dev_dbg(hw->dev, "PHY Read Error\n");
- return -E1000_ERR_PHY;
- }
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | e1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == e1000_fc_full) {
- hw->fc = e1000_fc_full;
- dev_dbg(hw->dev, "Flow Control = FULL.\r\n");
- } else {
- hw->fc = e1000_fc_rx_pause;
- dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
- {
- hw->fc = e1000_fc_tx_pause;
- dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
- {
- hw->fc = e1000_fc_rx_pause;
- dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if (hw->original_fc == e1000_fc_none ||
- hw->original_fc == e1000_fc_tx_pause) {
- hw->fc = e1000_fc_none;
- dev_dbg(hw->dev, "Flow Control = NONE.\r\n");
- } else {
- hw->fc = e1000_fc_rx_pause;
- dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
- }
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (duplex == HALF_DUPLEX)
- hw->fc = e1000_fc_none;
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val < 0) {
- dev_dbg(hw->dev, "Error forcing flow control settings\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
-{
- int32_t ret_val = E1000_SUCCESS;
- uint32_t tipg;
- uint16_t reg_data;
-
- DEBUGFUNC();
-
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = e1000_write_kmrn_reg(hw,
- E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
- E1000_WRITE_REG(hw, TIPG, tipg);
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
-
- if (ret_val)
- return ret_val;
-
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
-{
- int32_t ret_val = E1000_SUCCESS;
- uint16_t reg_data;
- uint32_t tipg;
-
- DEBUGFUNC();
-
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = e1000_write_kmrn_reg(hw,
- E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, tipg);
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
-
- if (ret_val)
- return ret_val;
-
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
- uint16_t *duplex)
-{
- uint32_t status;
- int32_t ret_val;
-
- DEBUGFUNC();
-
- if (hw->mac_type >= e1000_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- dev_dbg(hw->dev, "1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- dev_dbg(hw->dev, "100 Mbs, ");
- } else {
- *speed = SPEED_10;
- dev_dbg(hw->dev, "10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- dev_dbg(hw->dev, "Full Duplex\r\n");
- } else {
- *duplex = HALF_DUPLEX;
- dev_dbg(hw->dev, " Half Duplex\r\n");
- }
- } else {
- dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) {
- if (*speed == SPEED_1000)
- ret_val = e1000_configure_kmrn_for_1000(hw);
- else
- ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int e1000_wait_autoneg(struct e1000_hw *hw)
-{
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC();
- dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
- dev_dbg(hw->dev, "PHY Read Error\n");
- return -E1000_ERR_PHY;
- }
- if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
- dev_dbg(hw->dev, "PHY Read Error\n");
- return -E1000_ERR_PHY;
- }
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
- dev_dbg(hw->dev, "Auto-Neg complete.\n");
- return 0;
- }
- mdelay(100);
- }
- dev_dbg(hw->dev, "Auto-Neg timedout.\n");
- return -E1000_ERR_TIMEOUT;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
-{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 2 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- udelay(2);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
-{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 2 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- udelay(2);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
- uint16_t count)
-{
- uint32_t ctrl;
- uint32_t mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- udelay(2);
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
-{
- uint32_t ctrl;
- uint16_t data = 0;
- uint8_t i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- e1000_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- e1000_lower_mdi_clk(hw, &ctrl);
- }
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
-{
- struct e1000_hw *hw = bus->priv;
- uint32_t i;
- uint32_t mdic = 0;
-
- if (phy_addr != 1)
- return -EIO;
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- udelay(10);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- dev_dbg(hw->dev, "MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- dev_dbg(hw->dev, "MDI Error\n");
- return -E1000_ERR_PHY;
- }
- return mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- e1000_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- return e1000_shift_in_mdi_bits(hw);
- }
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
- uint16_t *phy_data)
-{
- int ret;
-
- ret = e1000_phy_read(&hw->miibus, 1, reg_addr);
- if (ret < 0)
- return ret;
-
- *phy_data = ret;
-
- return 0;
-}
-
-static int e1000_phy_write(struct mii_bus *bus, int phy_addr,
- int reg_addr, u16 phy_data)
-{
- struct e1000_hw *hw = bus->priv;
- uint32_t i;
- uint32_t mdic = 0;
-
- if (phy_addr != 1)
- return -EIO;
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((uint32_t) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- udelay(10);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- dev_dbg(hw->dev, "MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (uint32_t) phy_data;
-
- e1000_shift_out_mdi_bits(hw, mdic, 32);
- }
- return 0;
-}
-
-/******************************************************************************
- * Writes a value to a PHY register
- *
- * hw - Struct containing variables accessed by shared code
- * reg_addr - address of the PHY register to write
- * data - data to write to the PHY
- ******************************************************************************/
-static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
-{
- return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- * E1000_SUCCESS
- *
- *****************************************************************************/
-static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw)
-{
- if (hw->mac_type == e1000_ich8lan) {
- if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY)
- return E1000_SUCCESS;
- else
- return E1000_BLK_PHY_RESET;
- }
-
- if (hw->mac_type > e1000_82547_rev_2) {
- if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
- return E1000_BLK_PHY_RESET;
- else
- return E1000_SUCCESS;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
- DEBUGFUNC();
-
- switch (hw->mac_type) {
- default:
- mdelay(10);
- break;
-
- case e1000_80003es2lan:
- /* Separate *_CFG_DONE_* bit for each port */
- if (e1000_is_second_port(hw))
- cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* Fall Through */
-
- case e1000_82571:
- case e1000_82572:
- case e1000_igb:
- while (timeout) {
- if (hw->mac_type == e1000_igb) {
- if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
- break;
- } else {
- if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
- break;
- }
- mdelay(1);
- timeout--;
- }
- if (!timeout) {
- dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- uint16_t swfw = E1000_SWFW_PHY0_SM;
- uint32_t ctrl, ctrl_ext;
- uint32_t led_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC();
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = e1000_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- dev_dbg(hw->dev, "Resetting Phy...\n");
-
- if (hw->mac_type > e1000_82543) {
- if (e1000_is_second_port(hw))
- swfw = E1000_SWFW_PHY1_SM;
-
- if (e1000_swfw_sync_acquire(hw, swfw)) {
- dev_dbg(hw->dev, "Unable to acquire swfw sync\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
-
- udelay(100);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type >= e1000_82571)
- mdelay(10);
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- mdelay(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- udelay(150);
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- return e1000_get_phy_cfg_done(hw);
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_phy_init_script(struct e1000_hw *hw)
-{
- uint32_t ret_val;
- uint16_t phy_saved_data;
-
- DEBUGFUNC();
-
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- break;
- default:
- return;
- }
-
- mdelay(20);
-
- /* Save off the current value of register 0x2F5B to be
- * restored at the end of this routine. */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- mdelay(20);
-
- e1000_write_phy_reg(hw, 0x0000, 0x0140);
-
- mdelay(5);
-
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- e1000_write_phy_reg(hw, 0x1F95, 0x0001);
-
- e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- e1000_write_phy_reg(hw, 0x1F79, 0x0018);
-
- e1000_write_phy_reg(hw, 0x1F30, 0x1600);
-
- e1000_write_phy_reg(hw, 0x1F31, 0x0014);
-
- e1000_write_phy_reg(hw, 0x1F32, 0x161C);
-
- e1000_write_phy_reg(hw, 0x1F94, 0x0003);
-
- e1000_write_phy_reg(hw, 0x1F96, 0x003F);
-
- e1000_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- e1000_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- e1000_write_phy_reg(hw, 0x0000, 0x3300);
-
- mdelay(20);
-
- /* Now enable the transmitter */
- if (!ret_val)
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac_type == e1000_82547) {
- uint16_t fused, fine, coarse;
-
- /* Move to analog registers page */
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if (coarse >
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -=
- IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse
- == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control register
-******************************************************************************/
-static int32_t e1000_phy_reset(struct e1000_hw *hw)
-{
- uint16_t phy_data;
- int ret;
-
- DEBUGFUNC();
-
- /*
- * In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset.
- */
- if (e1000_check_phy_reset_block(hw))
- return E1000_SUCCESS;
-
- switch (hw->phy_type) {
- case e1000_phy_igp:
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- case e1000_phy_ife:
- case e1000_phy_igb:
- ret = e1000_phy_hw_reset(hw);
- if (ret)
- return ret;
- break;
- default:
- ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret)
- return ret;
-
- phy_data |= MII_CR_RESET;
- ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret)
- return ret;
-
- udelay(1);
- break;
- }
-
- if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
- e1000_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t e1000_detect_gig_phy(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_id_high, phy_id_low;
- e1000_phy_type phy_type = e1000_phy_undefined;
-
- DEBUGFUNC();
-
- /* The 82571 firmware may still be configuring the PHY. In this
- * case, we cannot access the PHY until the configuration is done. So
- * we explicitly set the PHY values. */
- if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
- hw->phy_id = IGP01E1000_I_PHY_ID;
- hw->phy_type = e1000_phy_igp_2;
- return E1000_SUCCESS;
- }
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
-
- hw->phy_id = (uint32_t) (phy_id_high << 16);
- udelay(20);
- ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
-
- hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
- switch (hw->mac_type) {
- case e1000_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID)
- phy_type = e1000_phy_m88;
- break;
- case e1000_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID)
- phy_type = e1000_phy_m88;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID)
- phy_type = e1000_phy_m88;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID)
- phy_type = e1000_phy_igp;
-
- break;
- case e1000_82573:
- if (hw->phy_id == M88E1111_I_PHY_ID)
- phy_type = e1000_phy_m88;
- break;
- case e1000_82574:
- if (hw->phy_id == BME1000_E_PHY_ID)
- phy_type = e1000_phy_bm;
- break;
- case e1000_80003es2lan:
- if (hw->phy_id == GG82563_E_PHY_ID)
- phy_type = e1000_phy_gg82563;
- break;
- case e1000_ich8lan:
- if (hw->phy_id == IGP03E1000_E_PHY_ID)
- phy_type = e1000_phy_igp_3;
- if (hw->phy_id == IFE_E_PHY_ID)
- phy_type = e1000_phy_ife;
- if (hw->phy_id == IFE_PLUS_E_PHY_ID)
- phy_type = e1000_phy_ife;
- if (hw->phy_id == IFE_C_E_PHY_ID)
- phy_type = e1000_phy_ife;
- break;
- case e1000_igb:
- if (hw->phy_id == I210_I_PHY_ID)
- phy_type = e1000_phy_igb;
- if (hw->phy_id == I350_I_PHY_ID)
- phy_type = e1000_phy_igb;
- break;
- default:
- dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
-
- if (!phy_type == e1000_phy_undefined) {
- dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id);
- return -EINVAL;
- }
-
- hw->phy_type = phy_type;
-
- return 0;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-static void e1000_set_media_type(struct e1000_hw *hw)
-{
- DEBUGFUNC();
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->media_type = e1000_media_type_internal_serdes;
- return;
- default:
- break;
- }
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->media_type = e1000_media_type_fiber;
- return;
- case e1000_ich8lan:
- case e1000_82573:
- case e1000_82574:
- case e1000_igb:
- /* The STATUS_TBIMODE bit is reserved or reused
- * for the this device.
- */
- hw->media_type = e1000_media_type_copper;
- return;
- default:
- break;
- }
-
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE)
- hw->media_type = e1000_media_type_fiber;
- else
- hw->media_type = e1000_media_type_copper;
-}
-
-/**
- * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
- *
- * e1000_sw_init initializes the Adapter private data structure.
- * Fields are initialized based on PCI device information and
- * OS network device settings (MTU size).
- **/
-
-static int e1000_sw_init(struct eth_device *edev)
-{
- struct e1000_hw *hw = edev->priv;
- int result;
-
- /* PCI config space info */
- pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
- pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
- pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
- pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
-
- /* identify the MAC */
- result = e1000_set_mac_type(hw);
- if (result) {
- dev_err(&hw->edev.dev, "Unknown MAC Type\n");
- return result;
- }
-
- return E1000_SUCCESS;
-}
-
-static void fill_rx(struct e1000_hw *hw)
-{
- volatile struct e1000_rx_desc *rd;
- volatile u32 *bla;
- int i;
-
- hw->rx_last = hw->rx_tail;
- rd = hw->rx_base + hw->rx_tail;
- hw->rx_tail = (hw->rx_tail + 1) % 8;
-
- bla = (void *)rd;
- for (i = 0; i < 4; i++)
- *bla++ = 0;
-
- rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet);
-
- E1000_WRITE_REG(hw, RDT, hw->rx_tail);
-}
-
-/**
- * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Tx unit of the MAC after a reset.
- **/
-
-static void e1000_configure_tx(struct e1000_hw *hw)
-{
- unsigned long tctl;
- unsigned long tipg, tarc;
- uint32_t ipgr1, ipgr2;
-
- E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base);
- E1000_WRITE_REG(hw, TDBAH, 0);
-
- E1000_WRITE_REG(hw, TDLEN, 128);
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(hw, TDH, 0);
- E1000_WRITE_REG(hw, TDT, 0);
- hw->tx_tail = 0;
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- if (hw->mac_type <= e1000_82547_rev_2 &&
- (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes))
- tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
- else
- tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- tipg = DEFAULT_82542_TIPG_IPGT;
- ipgr1 = DEFAULT_82542_TIPG_IPGR1;
- ipgr2 = DEFAULT_82542_TIPG_IPGR2;
- break;
- case e1000_80003es2lan:
- ipgr1 = DEFAULT_82543_TIPG_IPGR1;
- ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
- break;
- default:
- ipgr1 = DEFAULT_82543_TIPG_IPGR1;
- ipgr2 = DEFAULT_82543_TIPG_IPGR2;
- break;
- }
- tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
- tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
- E1000_WRITE_REG(hw, TIPG, tipg);
- /* Program the Transmit Control Register */
- tctl = E1000_READ_REG(hw, TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-
- if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
- tarc = E1000_READ_REG(hw, TARC0);
- /* set the speed mode bit, we'll clear it if we're not at
- * gigabit link later */
- /* git bit can be set to 1*/
- } else if (hw->mac_type == e1000_80003es2lan) {
- tarc = E1000_READ_REG(hw, TARC0);
- tarc |= 1;
- E1000_WRITE_REG(hw, TARC0, tarc);
- tarc = E1000_READ_REG(hw, TARC1);
- tarc |= 1;
- E1000_WRITE_REG(hw, TARC1, tarc);
- }
-
-
- e1000_config_collision_dist(hw);
- /* Setup Transmit Descriptor Settings for eop descriptor */
- hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
-
- /* Need to set up RS bit */
- if (hw->mac_type < e1000_82543)
- hw->txd_cmd |= E1000_TXD_CMD_RPS;
- else
- hw->txd_cmd |= E1000_TXD_CMD_RS;
-
-
- if (hw->mac_type == e1000_igb) {
- uint32_t reg_txdctl;
-
- E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
-
- reg_txdctl = E1000_READ_REG(hw, TXDCTL);
- reg_txdctl |= 1 << 25;
- E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
- mdelay(20);
- }
-
- E1000_WRITE_REG(hw, TCTL, tctl);
-}
-
-/**
- * e1000_setup_rctl - configure the receive control register
- * @adapter: Board private structure
- **/
-static void e1000_setup_rctl(struct e1000_hw *hw)
-{
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, RCTL);
-
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
-
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
- | E1000_RCTL_RDMTS_HALF; /* |
- (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
-
- rctl &= ~E1000_RCTL_SBP;
-
- rctl &= ~(E1000_RCTL_SZ_4096);
- rctl |= E1000_RCTL_SZ_2048;
- rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
- E1000_WRITE_REG(hw, RCTL, rctl);
-}
-
-/**
- * e1000_configure_rx - Configure 8254x Receive Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Rx unit of the MAC after a reset.
- **/
-static void e1000_configure_rx(struct e1000_hw *hw)
-{
- unsigned long rctl, ctrl_ext;
-
- hw->rx_tail = 0;
- /* make sure receives are disabled while setting up the descriptors */
- rctl = E1000_READ_REG(hw, RCTL);
- E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
- if (hw->mac_type >= e1000_82540) {
- /* Set the interrupt throttling rate. Value is calculated
- * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
-#define MAX_INTS_PER_SEC 8000
-#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
- E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
- }
-
- if (hw->mac_type >= e1000_82571) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- /* Reset delay timers after every interrupt */
- ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- /* Setup the Base and Length of the Rx Descriptor Ring */
- E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base);
- E1000_WRITE_REG(hw, RDBAH, 0);
-
- E1000_WRITE_REG(hw, RDLEN, 128);
-
- /* Setup the HW Rx Head and Tail Descriptor Pointers */
- E1000_WRITE_REG(hw, RDH, 0);
- E1000_WRITE_REG(hw, RDT, 0);
- /* Enable Receives */
-
- if (hw->mac_type == e1000_igb) {
- uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
- reg_rxdctl |= 1 << 25;
- E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
- mdelay(20);
- }
-
- E1000_WRITE_REG(hw, RCTL, rctl);
-
- fill_rx(hw);
-}
-
-static int e1000_poll(struct eth_device *edev)
-{
- struct e1000_hw *hw = edev->priv;
- volatile struct e1000_rx_desc *rd;
- uint32_t len;
-
- rd = hw->rx_base + hw->rx_last;
-
- if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
- return 0;
-
- len = le32_to_cpu(rd->length);
-
- dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE);
-
- net_receive(edev, (uchar *)hw->packet, len);
- fill_rx(hw);
- return 1;
-}
-
-static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
-{
- void *nv_packet = (void *)txpacket;
- struct e1000_hw *hw = edev->priv;
- volatile struct e1000_tx_desc *txp;
- uint64_t to;
-
- txp = hw->tx_base + hw->tx_tail;
- hw->tx_tail = (hw->tx_tail + 1) % 8;
-
- txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
- txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
- txp->upper.data = 0;
-
- dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE);
-
- E1000_WRITE_REG(hw, TDT, hw->tx_tail);
-
- E1000_WRITE_FLUSH(hw);
-
- to = get_time_ns();
- while (1) {
- if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
- break;
- if (is_timeout(to, MSECOND)) {
- dev_dbg(hw->dev, "e1000: tx timeout\n");
- return -ETIMEDOUT;
- }
- }
-
- return 0;
-}
-
-static void e1000_disable(struct eth_device *edev)
-{
- struct e1000_hw *hw = edev->priv;
-
- /* Turn off the ethernet interface */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, 0);
-
- /* Clear the transmit ring */
- E1000_WRITE_REG(hw, TDH, 0);
- E1000_WRITE_REG(hw, TDT, 0);
-
- /* Clear the receive ring */
- E1000_WRITE_REG(hw, RDH, 0);
- E1000_WRITE_REG(hw, RDT, 0);
-
- mdelay(10);
-}
-
-static int e1000_init(struct eth_device *edev)
-{
- struct e1000_hw *hw = edev->priv;
- uint32_t i;
- uint32_t mta_size;
- uint32_t reg_data;
-
- DEBUGFUNC();
-
- if (hw->mac_type >= e1000_82544)
- E1000_WRITE_REG(hw, WUC, 0);
-
- /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
- if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) ||
- ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
- (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~0x80000000;
- E1000_WRITE_REG(hw, STATUS, reg_data);
- }
-
- /* Set the media type and TBI compatibility */
- e1000_set_media_type(hw);
-
- /* Must be called after e1000_set_media_type
- * because media_type is used */
- e1000_initialize_hardware_bits(hw);
-
- /* Disabling VLAN filtering. */
- /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
- if (hw->mac_type != e1000_ich8lan) {
- if (hw->mac_type < e1000_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- e1000_clear_vfta(hw);
- }
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
- pci_write_config_word(hw->pdev, PCI_COMMAND,
- hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- mdelay(5);
- }
-
- for (i = 1; i < E1000_RAR_ENTRIES; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- }
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == e1000_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- mdelay(1);
- pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
- }
-
- /* Zero out the Multicast HASH table */
- mta_size = E1000_MC_TBL_SIZE;
- if (hw->mac_type == e1000_ich8lan)
- mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
-
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occuring when accessing our register space */
- E1000_WRITE_FLUSH(hw);
- }
-
- /* More time needed for PHY to initialize */
- if (hw->mac_type == e1000_ich8lan)
- mdelay(15);
- if (hw->mac_type == e1000_igb)
- mdelay(15);
-
- e1000_configure_tx(hw);
- e1000_configure_rx(hw);
- e1000_setup_rctl(hw);
-
- return 0;
-}
-
-static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
-{
- struct e1000_hw *hw;
- struct eth_device *edev;
- int ret;
-
- pci_enable_device(pdev);
- pci_set_master(pdev);
-
- hw = xzalloc(sizeof(*hw));
-
- hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN);
- hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN);
- hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN);
-
- edev = &hw->edev;
-
- hw->pdev = pdev;
- hw->dev = &pdev->dev;
- pdev->dev.priv = hw;
- edev->priv = hw;
-
- hw->hw_addr = pci_iomap(pdev, 0);
-
- /* MAC and Phy settings */
- if (e1000_sw_init(edev) < 0) {
- dev_err(&pdev->dev, "Software init failed\n");
- return -EINVAL;
- }
-
- if (e1000_check_phy_reset_block(hw))
- dev_err(&pdev->dev, "PHY Reset is blocked!\n");
-
- /* Basic init was OK, reset the hardware and allow SPI access */
- e1000_reset_hw(hw);
-
- /* Validate the EEPROM and get chipset information */
- if (e1000_init_eeprom_params(hw)) {
- dev_err(&pdev->dev, "EEPROM is invalid!\n");
- return -EINVAL;
- }
- if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
- e1000_validate_eeprom_checksum(hw))
- return -EINVAL;
-
- e1000_get_ethaddr(edev, edev->ethaddr);
-
- /* Set up the function pointers and register the device */
- edev->init = e1000_init;
- edev->recv = e1000_poll;
- edev->send = e1000_transmit;
- edev->halt = e1000_disable;
- edev->open = e1000_open;
- edev->get_ethaddr = e1000_get_ethaddr;
- edev->set_ethaddr = e1000_set_ethaddr;
-
- hw->miibus.read = e1000_phy_read;
- hw->miibus.write = e1000_phy_write;
- hw->miibus.priv = hw;
- hw->miibus.parent = &edev->dev;
-
- ret = eth_register(edev);
- if (ret)
- return ret;
-
- /*
- * The e1000 driver does its own phy handling, but registering
- * the phy allows to show the phy registers for debugging purposes.
- */
- ret = mdiobus_register(&hw->miibus);
- if (ret)
- return ret;
-
- return 0;
-}
-
-static void e1000_remove(struct pci_dev *pdev)
-{
- struct e1000_hw *hw = pdev->dev.priv;
-
- e1000_disable(&hw->edev);
-}
-
-static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), },
- /* E1000 PCIe card */
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), },
- { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), },
- { /* sentinel */ }
-};
-
-static struct pci_driver e1000_eth_driver = {
- .name = "e1000",
- .id_table = e1000_pci_tbl,
- .probe = e1000_probe,
- .remove = e1000_remove,
-};
-
-static int e1000_driver_init(void)
-{
- return pci_register_driver(&e1000_eth_driver);
-}
-device_initcall(e1000_driver_init);
diff --git a/drivers/net/e1000.h b/drivers/net/e1000.h
deleted file mode 100644
index 9fb0cb7..0000000
--- a/drivers/net/e1000.h
+++ /dev/null
@@ -1,2093 +0,0 @@
-/*******************************************************************************
-
-
- Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
- Copyright 2011 Freescale Semiconductor, Inc.
-
- * SPDX-License-Identifier: GPL-2.0+
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* e1000_hw.h
- * Structures, enums, and macros for the MAC
- */
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#ifdef E1000_DEBUG
-#define DEBUGFUNC() printf("%s\n", __func__);
-#else
-#define DEBUGFUNC() do { } while (0)
-#endif
-
-/* I/O wrapper functions */
-#define E1000_WRITE_REG(a, reg, value) \
- writel((value), ((a)->hw_addr + E1000_##reg))
-#define E1000_READ_REG(a, reg) \
- readl((a)->hw_addr + E1000_##reg)
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
- writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))
-#define E1000_READ_REG_ARRAY(a, reg, offset) \
- readl((a)->hw_addr + E1000_##reg + ((offset) << 2))
-#define E1000_WRITE_FLUSH(a) \
- do { E1000_READ_REG(a, STATUS); } while (0)
-
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controlers */
-typedef enum {
- e1000_undefined = 0,
- e1000_82542_rev2_0,
- e1000_82542_rev2_1,
- e1000_82543,
- e1000_82544,
- e1000_82540,
- e1000_82545,
- e1000_82545_rev_3,
- e1000_82546,
- e1000_82546_rev_3,
- e1000_82541,
- e1000_82541_rev_2,
- e1000_82547,
- e1000_82547_rev_2,
- e1000_82571,
- e1000_82572,
- e1000_82573,
- e1000_82574,
- e1000_80003es2lan,
- e1000_ich8lan,
- e1000_igb,
- e1000_num_macs
-} e1000_mac_type;
-
-/* Media Types */
-typedef enum {
- e1000_media_type_copper = 0,
- e1000_media_type_fiber = 1,
- e1000_media_type_internal_serdes = 2,
- e1000_num_media_types
-} e1000_media_type;
-
-typedef enum {
- e1000_eeprom_uninitialized = 0,
- e1000_eeprom_spi,
- e1000_eeprom_microwire,
- e1000_eeprom_flash,
- e1000_eeprom_ich8,
- e1000_eeprom_none, /* No NVM support */
- e1000_eeprom_invm,
- e1000_num_eeprom_types
-} e1000_eeprom_type;
-
-/* Flow Control Settings */
-typedef enum {
- e1000_fc_none = 0,
- e1000_fc_rx_pause = 1,
- e1000_fc_tx_pause = 2,
- e1000_fc_full = 3,
- e1000_fc_default = 0xFF
-} e1000_fc_type;
-
-typedef enum {
- e1000_phy_m88 = 0,
- e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
- e1000_phy_igb,
- e1000_phy_bm,
- e1000_phy_82580,
- e1000_phy_undefined = 0xFF
-} e1000_phy_type;
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_EEPROM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_NOLINK 7
-#define E1000_ERR_TIMEOUT 8
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-#define E1000_DEV_ID_82574L 0x10D3
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-
-#define E1000_DEV_ID_I350_COPPER 0x1521
-#define E1000_DEV_ID_I210_UNPROGRAMMED 0x1531
-#define E1000_DEV_ID_I211_UNPROGRAMMED 0x1532
-#define E1000_DEV_ID_I210_COPPER 0x1533
-#define E1000_DEV_ID_I210_SERDES 0x1536
-#define E1000_DEV_ID_I210_1000BASEKX 0x1537
-#define E1000_DEV_ID_I210_EXTPHY 0x1538
-#define E1000_DEV_ID_I211_COPPER 0x1539
-#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157b
-#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157c
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status,
- Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special
- control register */
-#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive false
- Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet
- Counter */
-#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error
- Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error
- Counter */
-#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive
- Premature End Of Frame
- Error Counter */
-#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of
- Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber
- Detect Counter */
-#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and
- Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and
- LED configuration */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control
- (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto
- reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power
- state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power
- state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T
- polarity */
-#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY
- address */
-#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed
- result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation
- duplex result 1=Full, 0=Half */
-#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
-
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down
- disabled */
-#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity,
- 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity
- Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled,
- 0=Normal Jabber Operation */
-#define IFE_PSC_FORCE_POLARITY_SHIFT 5
-#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
-
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X
- feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X,
- 0=force MDI */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm
- is completed */
-#define IFE_PMC_MDIX_MODE_SHIFT 6
-#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI
- feature */
-#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed,
- 0=failed */
-#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses
- on the wire */
-#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication
- type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to
- the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2
- off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-#define NODE_ADDRESS_SIZE 6
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 16
-
-#define MIN_NUMBER_OF_DESCRIPTORS 8
-#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
-
-/* Receive Descriptor */
-struct e1000_rx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- uint16_t length; /* Length of data DMAed into data buffer */
- uint16_t csum; /* Packet checksum */
- uint8_t status; /* Descriptor status */
- uint8_t errors; /* Descriptor Errors */
- uint16_t special;
-};
-
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- union {
- uint32_t data;
- struct {
- uint16_t length; /* Data buffer length */
- uint8_t cso; /* Checksum offset */
- uint8_t cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t css; /* Checksum start */
- uint16_t special;
- } fields;
- } upper;
-};
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Filters */
-#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_I210_EECD 0x12010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_I210_EERD 0x12014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_I210_IAM 0x000E0 /* Interrupt Ack Auto Mask - RW */
-#define E1000_RCTL 0x00100 /* RX Control - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
-#define E1000_TCTL 0x00400 /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
-#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define E1000_I210_PHY_CTRL 0x00E14 /* PHY Control Register in CSR */
-#define FEXTNVM_SW_CONFIG 0x0001
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_I210_EEMNGCTL 0x12030 /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_I210_EEWR 0x12018 /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
-#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
-#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
-#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
-#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
-#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
-#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
-#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
-#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
-#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
-#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
-#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
-#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
-#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTRL E1000_CTRL
-#define E1000_82542_STATUS E1000_STATUS
-#define E1000_82542_EECD E1000_EECD
-#define E1000_82542_EERD E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_MDIC E1000_MDIC
-#define E1000_82542_FCAL E1000_FCAL
-#define E1000_82542_FCAH E1000_FCAH
-#define E1000_82542_FCT E1000_FCT
-#define E1000_82542_VET E1000_VET
-#define E1000_82542_RA 0x00040
-#define E1000_82542_ICR E1000_ICR
-#define E1000_82542_ITR E1000_ITR
-#define E1000_82542_ICS E1000_ICS
-#define E1000_82542_IMS E1000_IMS
-#define E1000_82542_IMC E1000_IMC
-#define E1000_82542_RCTL E1000_RCTL
-#define E1000_82542_RDTR 0x00108
-#define E1000_82542_RDBAL 0x00110
-#define E1000_82542_RDBAH 0x00114
-#define E1000_82542_RDLEN 0x00118
-#define E1000_82542_RDH 0x00120
-#define E1000_82542_RDT 0x00128
-#define E1000_82542_FCRTH 0x00160
-#define E1000_82542_FCRTL 0x00168
-#define E1000_82542_FCTTV E1000_FCTTV
-#define E1000_82542_TXCW E1000_TXCW
-#define E1000_82542_RXCW E1000_RXCW
-#define E1000_82542_MTA 0x00200
-#define E1000_82542_TCTL E1000_TCTL
-#define E1000_82542_TIPG E1000_TIPG
-#define E1000_82542_TDBAL 0x00420
-#define E1000_82542_TDBAH 0x00424
-#define E1000_82542_TDLEN 0x00428
-#define E1000_82542_TDH 0x00430
-#define E1000_82542_TDT 0x00438
-#define E1000_82542_TIDV 0x00440
-#define E1000_82542_TBT E1000_TBT
-#define E1000_82542_AIT E1000_AIT
-#define E1000_82542_VFTA 0x00600
-#define E1000_82542_LEDCTL E1000_LEDCTL
-#define E1000_82542_PBA E1000_PBA
-#define E1000_82542_RXDCTL E1000_RXDCTL
-#define E1000_82542_RADV E1000_RADV
-#define E1000_82542_RSRPD E1000_RSRPD
-#define E1000_82542_TXDMAC E1000_TXDMAC
-#define E1000_82542_TXDCTL E1000_TXDCTL
-#define E1000_82542_TADV E1000_TADV
-#define E1000_82542_TSPMT E1000_TSPMT
-#define E1000_82542_CRCERRS E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS E1000_SYMERRS
-#define E1000_82542_RXERRC E1000_RXERRC
-#define E1000_82542_MPC E1000_MPC
-#define E1000_82542_SCC E1000_SCC
-#define E1000_82542_ECOL E1000_ECOL
-#define E1000_82542_MCC E1000_MCC
-#define E1000_82542_LATECOL E1000_LATECOL
-#define E1000_82542_COLC E1000_COLC
-#define E1000_82542_DC E1000_DC
-#define E1000_82542_TNCRS E1000_TNCRS
-#define E1000_82542_SEC E1000_SEC
-#define E1000_82542_CEXTERR E1000_CEXTERR
-#define E1000_82542_RLEC E1000_RLEC
-#define E1000_82542_XONRXC E1000_XONRXC
-#define E1000_82542_XONTXC E1000_XONTXC
-#define E1000_82542_XOFFRXC E1000_XOFFRXC
-#define E1000_82542_XOFFTXC E1000_XOFFTXC
-#define E1000_82542_FCRUC E1000_FCRUC
-#define E1000_82542_PRC64 E1000_PRC64
-#define E1000_82542_PRC127 E1000_PRC127
-#define E1000_82542_PRC255 E1000_PRC255
-#define E1000_82542_PRC511 E1000_PRC511
-#define E1000_82542_PRC1023 E1000_PRC1023
-#define E1000_82542_PRC1522 E1000_PRC1522
-#define E1000_82542_GPRC E1000_GPRC
-#define E1000_82542_BPRC E1000_BPRC
-#define E1000_82542_MPRC E1000_MPRC
-#define E1000_82542_GPTC E1000_GPTC
-#define E1000_82542_GORCL E1000_GORCL
-#define E1000_82542_GORCH E1000_GORCH
-#define E1000_82542_GOTCL E1000_GOTCL
-#define E1000_82542_GOTCH E1000_GOTCH
-#define E1000_82542_RNBC E1000_RNBC
-#define E1000_82542_RUC E1000_RUC
-#define E1000_82542_RFC E1000_RFC
-#define E1000_82542_ROC E1000_ROC
-#define E1000_82542_RJC E1000_RJC
-#define E1000_82542_MGTPRC E1000_MGTPRC
-#define E1000_82542_MGTPDC E1000_MGTPDC
-#define E1000_82542_MGTPTC E1000_MGTPTC
-#define E1000_82542_TORL E1000_TORL
-#define E1000_82542_TORH E1000_TORH
-#define E1000_82542_TOTL E1000_TOTL
-#define E1000_82542_TOTH E1000_TOTH
-#define E1000_82542_TPR E1000_TPR
-#define E1000_82542_TPT E1000_TPT
-#define E1000_82542_PTC64 E1000_PTC64
-#define E1000_82542_PTC127 E1000_PTC127
-#define E1000_82542_PTC255 E1000_PTC255
-#define E1000_82542_PTC511 E1000_PTC511
-#define E1000_82542_PTC1023 E1000_PTC1023
-#define E1000_82542_PTC1522 E1000_PTC1522
-#define E1000_82542_MPTC E1000_MPTC
-#define E1000_82542_BPTC E1000_BPTC
-#define E1000_82542_TSCTC E1000_TSCTC
-#define E1000_82542_TSCTFC E1000_TSCTFC
-#define E1000_82542_RXCSUM E1000_RXCSUM
-#define E1000_82542_WUC E1000_WUC
-#define E1000_82542_WUFC E1000_WUFC
-#define E1000_82542_WUS E1000_WUS
-#define E1000_82542_MANC E1000_MANC
-#define E1000_82542_IPAV E1000_IPAV
-#define E1000_82542_IP4AT E1000_IP4AT
-#define E1000_82542_IP6AT E1000_IP6AT
-#define E1000_82542_WUPL E1000_WUPL
-#define E1000_82542_WUPM E1000_WUPM
-#define E1000_82542_FFLT E1000_FFLT
-#define E1000_82542_FFMT E1000_FFMT
-#define E1000_82542_FFVT E1000_FFVT
-
-struct e1000_eeprom_info {
- e1000_eeprom_type type;
- uint16_t word_size;
- uint16_t opcode_bits;
- uint16_t address_bits;
- uint16_t delay_usec;
- uint16_t page_size;
- bool use_eerd;
- bool use_eewr;
-};
-
-#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM
- read/write registers */
-#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start
- operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write
- complete */
-#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
-#define EEPROM_RESERVED_WORD 0xFFFF
-
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_PF_RST_DONE 0x00200000 /* PCI-X bus speed */
-
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
- * (0-small, 1-large) */
-
-#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT 22
-#define E1000_STM_OPCODE 0xDB00
-#define E1000_HICR_FW_RESET 0xC0
-
-#define E1000_SHADOW_RAM_WORDS 2048
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START 0x00000001 /* Start Read */
-#define E1000_EERD_DONE 0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT 6
-#define EEPROM_SIZE_SHIFT 10
-#define EEPROM_SIZE_MASK 0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT 0x0003
-#define EEPROM_ID_LED_SETTINGS 0x0004
-#define EEPROM_VERSION 0x0005
-#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude
- adjustment. */
-#define EEPROM_PHY_CLASS_WORD 0x0007
-#define EEPROM_INIT_CONTROL1_REG 0x000A
-#define EEPROM_INIT_CONTROL2_REG 0x000F
-#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
-#define EEPROM_INIT_3GIO_3 0x001A
-#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
-#define EEPROM_CFG 0x0012
-#define EEPROM_FLASH_VERSION 0x0032
-#define EEPROM_CHECKSUM_REG 0x003F
-
-#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable
- Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable
- Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SWDPIN6 0x00000040 /* SWDPIN 6 value */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SWDPIN7 0x00000080 /* SWDPIN 7 value */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SWDPIO6 0x00000400 /* SWDPIN 6 Input or output */
-#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_SWDPIO7 0x00000800 /* SWDPIN 7 Input or output */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-
-#define E1000_PHY_CTRL_SPD_EN 0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-#define E1000_PHY_CTRL_B2B_EN 0x00000080
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Receive Address */
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD E1000_ICR_SRPD
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-
-/* SW_W_SYNC definitions */
-#define E1000_SWFW_EEP_SM 0x0001
-#define E1000_SWFW_PHY0_SM 0x0002
-#define E1000_SWFW_PHY1_SM 0x0004
-#define E1000_SWFW_MAC_CSR_SM 0x0008
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
-#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
-#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
-#define E1000_RXDCTL_FULL_RX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
- * Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN 4096
-
-/* EEPROM Commands */
-#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */
-#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */
-#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */
-#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */
-#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define EEPROM_COMPAT_SERVER 0x0400
-#define EEPROM_COMPAT_CLIENT 0x0200
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS 0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST 0x0200
-#define EEPROM_WORD0A_FD 0x0400
-#define EEPROM_WORD0A_66MHZ 0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE 0x1000
-#define EEPROM_WORD0F_ASM_DIR 0x2000
-#define EEPROM_WORD0F_ANE 0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1 8
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 0xF
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLLISION_DISTANCE_82542 64
-#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_GB_HDX_COLLISION_DISTANCE 512
-#define E1000_COLD_SHIFT 12
-
-/* The number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START 8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP 190
-#define TX_THRESHOLD_DISABLE 0
-#define TX_THRESHOLD_TIMER_MS 10000
-#define MIN_NUM_XMITS 1000
-#define IFS_MAX 80
-#define IFS_STEP 10
-#define IFS_MIN 40
-#define IFS_RATIO 4
-
-/* PBA constants */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
-#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
-#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
-
-/* Flow Control High-Watermark: 43464 bytes */
-#define E1000_FC_HIGH_THRESH 0xA9C8
-/* Flow Control Low-Watermark: 43456 bytes */
-#define E1000_FC_LOW_THRESH 0xA9C0
-/* Flow Control Pause Time: 858 usec */
-#define E1000_FC_PAUSE_TIME 0x0680
-
-/* The number of bits that we need to shift right to move the "pause"
- * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field
- * in the TXCW register
- */
-#define PAUSE_SHIFT 5
-
-/* The number of bits that we need to shift left to move the "SWDPIO"
- * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field
- * in the CTRL register
- */
-#define SWDPIO_SHIFT 17
-
-/* The number of bits that we need to shift left to move the "SWDPIO_EXT"
- * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The
- * Extended CTRL register.
- * in the CTRL register
- */
-#define SWDPIO__EXT_SHIFT 4
-
-#define RECEIVE_BUFFER_ALIGN_SIZE (256)
-
-/* The number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT 500
-
-#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Regiser */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
-
-/* IGP01E1000 specifics */
-#define IGP01E1000_IEEE_REGS_PAGE 0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT 0x19
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A 0x1172
-#define IGP01E1000_PHY_AGC_B 0x1272
-#define IGP01E1000_PHY_AGC_C 0x1472
-#define IGP01E1000_PHY_AGC_D 0x1872
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
-#define IGP01E1000_PSCFR_PRE_EN 0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in
- non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in
- D0a mode */
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET 0x1F33
-#define IGP01E1000_PHY_DSP_SET 0x1F71
-#define IGP01E1000_PHY_DSP_FFE 0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-
-#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
- * on Link-Up */
-#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal
- Disabled */
-#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */
-#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter
- Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI
- configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX
- configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic
- crossover */
-#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended
- Distance */
-#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300
-#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */
-#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only
- (Energy Detect) */
-#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */
-#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */
-#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12
-
-/* PHY Specific Status Register (Page 0, Register 17) */
-#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */
-#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */
-#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */
-#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */
-#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */
-#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */
-#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */
-#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */
-#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
-#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */
-#define GG82563_PSSR_SPEED_MASK 0xC000
-#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */
-#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */
-#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */
-
-/* PHY Specific Status Register 2 (Page 0, Register 19) */
-#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */
-#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
-#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */
-#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */
-#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=false Carrier */
-#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */
-#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */
-#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */
-#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */
-#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */
-#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative
- Polarity */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C
-#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal
- Operation */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns
- Sequence */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns
- Sequence */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse
- Auto-Negotiation */
-#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable
- 1000BASE-T */
-#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M;
- 1 = 50-80M;
- 2 = 80-110M;
- 3 = 110-140M;
- 4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs,
- 0=Kumeran Inband LEDs */
-#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */
-#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz,
- 0=0.8MHz */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES
- Electrical Idle */
-#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */
-#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */
-#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse
- Auto-Negotiation */
-#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps
- Auto-Neg in non D0 */
-#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps
- Auto-Neg Always */
-#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a
- Reverse Auto-Negotiation */
-#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */
-
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS \
- GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE \
- GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2 \
- GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR \
- GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL \
- GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2 \
- GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET \
- GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID \
- GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID \
- GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL \
- GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
- GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL \
- GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC \
- GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS \
- GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY \
- GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
- GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE \
- GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
- GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC \
- GG82563_REG(194, 26) /* Misc. */
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
- /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
- * 0=CLK125 toggling
- */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_MDIX_SHIFT 6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
-
-/* Bit definitions for valid PHY IDs. */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define L1LXT971A_PHY_ID 0x001378E0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define I350_I_PHY_ID 0x015403B0
-
-#define BME1000_E_PHY_ID 0x01410CB0
-
-#define I210_I_PHY_ID 0x01410C00
-
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE 0xFFFFFFFF
-#define PHY_SOF 0x01
-#define PHY_OP_READ 0x02
-#define PHY_OP_WRITE 0x01
-#define PHY_TURNAROUND 0x02
-#define PHY_PREAMBLE_SIZE 32
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-#define E1000_PHY_ADDRESS 0x01
-#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
-#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK 0x01E0
-#define REG9_SPEED_MASK 0x0300
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
-#define ICH_FLASH_FRACC 0x0050
-#define ICH_FLASH_FREG0 0x0054
-#define ICH_FLASH_FREG1 0x0058
-#define ICH_FLASH_FREG2 0x005C
-#define ICH_FLASH_FREG3 0x0060
-#define ICH_FLASH_FPR0 0x0074
-#define ICH_FLASH_FPR1 0x0078
-#define ICH_FLASH_SSFSTS 0x0090
-#define ICH_FLASH_SSFCTL 0x0092
-#define ICH_FLASH_PREOP 0x0094
-#define ICH_FLASH_OPTYPE 0x0096
-#define ICH_FLASH_OPMENU 0x0098
-
-#define ICH_FLASH_REG_MAPSIZE 0x00A0
-#define ICH_FLASH_SECTOR_SIZE 4096
-#define ICH_GFPREG_BASE_MASK 0x1FFF
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI 0x01
-#define EEPROM_STATUS_WEN_SPI 0x02
-#define EEPROM_STATUS_BP0_SPI 0x04
-#define EEPROM_STATUS_BP1_SPI 0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
-
-#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
-#define E1000_FWSM_SKUEL_SHIFT 29
-#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
-
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Inteface Control */
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A 0x8000
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
-
-#define E1000_KUMCTRLSTA_MASK 0x0000FFFF
-#define E1000_KUMCTRLSTA_OFFSET 0x001F0000
-#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KUMCTRLSTA_REN 0x00200000
-
-#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000
-#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001
-#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002
-#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003
-#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004
-#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009
-#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010
-#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E
-#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F
-
-/* FIFO Control */
-#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008
-#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
-
-/* In-Band Control */
-#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
-#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
-
-/* Half-Duplex Control */
-#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
-#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
-
-#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
-
-#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
-#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
-
-#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
-#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
-#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
-
-#define E1000_MNG_ICH_IAMT_MODE 0x2
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008
-#define AUTO_ALL_MODES 0
-
-#ifndef E1000_MASTER_SLAVE
-/* Switch to override PHY master/slave setting */
-#define E1000_MASTER_SLAVE e1000_ms_hw_default
-#endif
-/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000
-
-#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-#define E1000_MC_TBL_SIZE_ICH8LAN 32
-
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers
- after IMS clear */
-#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
new file mode 100644
index 0000000..82ff32e
--- /dev/null
+++ b/drivers/net/e1000/e1000.h
@@ -0,0 +1,2139 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+ Copyright 2011 Freescale Semiconductor, Inc.
+
+ * SPDX-License-Identifier: GPL-2.0+
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#include <io.h>
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#ifdef E1000_DEBUG
+#define DEBUGFUNC() printf("%s\n", __func__);
+#else
+#define DEBUGFUNC() do { } while (0)
+#endif
+
+/* I/O wrapper functions */
+#define E1000_WRITE_REG(a, reg, value) \
+ writel((value), ((a)->hw_addr + E1000_##reg))
+#define E1000_READ_REG(a, reg) \
+ readl((a)->hw_addr + E1000_##reg)
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
+ writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))
+#define E1000_READ_REG_ARRAY(a, reg, offset) \
+ readl((a)->hw_addr + E1000_##reg + ((offset) << 2))
+#define E1000_WRITE_FLUSH(a) \
+ do { E1000_READ_REG(a, STATUS); } while (0)
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+ e1000_undefined = 0,
+ e1000_82542_rev2_0,
+ e1000_82542_rev2_1,
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_82571,
+ e1000_82572,
+ e1000_82573,
+ e1000_82574,
+ e1000_80003es2lan,
+ e1000_ich8lan,
+ e1000_igb,
+ e1000_num_macs
+} e1000_mac_type;
+
+/* Media Types */
+typedef enum {
+ e1000_media_type_copper = 0,
+ e1000_media_type_fiber = 1,
+ e1000_media_type_internal_serdes = 2,
+ e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+ e1000_eeprom_uninitialized = 0,
+ e1000_eeprom_spi,
+ e1000_eeprom_microwire,
+ e1000_eeprom_flash,
+ e1000_eeprom_ich8,
+ e1000_eeprom_none, /* No NVM support */
+ e1000_eeprom_invm,
+ e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Flow Control Settings */
+typedef enum {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause = 1,
+ e1000_fc_tx_pause = 2,
+ e1000_fc_full = 3,
+ e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+typedef enum {
+ e1000_phy_m88 = 0,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+ e1000_phy_igb,
+ e1000_phy_bm,
+ e1000_phy_82580,
+ e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_EEPROM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_NOLINK 7
+#define E1000_ERR_TIMEOUT 8
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82547EI_MOBILE 0x101A
+#define E1000_DEV_ID_82571EB_COPPER 0x105E
+#define E1000_DEV_ID_82571EB_FIBER 0x105F
+#define E1000_DEV_ID_82571EB_SERDES 0x1060
+#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC
+#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
+#define E1000_DEV_ID_82572EI_COPPER 0x107D
+#define E1000_DEV_ID_82572EI_FIBER 0x107E
+#define E1000_DEV_ID_82572EI_SERDES 0x107F
+#define E1000_DEV_ID_82572EI 0x10B9
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+#define E1000_DEV_ID_82573L 0x109A
+#define E1000_DEV_ID_82574L 0x10D3
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+
+#define E1000_DEV_ID_I350_COPPER 0x1521
+#define E1000_DEV_ID_I210_UNPROGRAMMED 0x1531
+#define E1000_DEV_ID_I211_UNPROGRAMMED 0x1532
+#define E1000_DEV_ID_I210_COPPER 0x1533
+#define E1000_DEV_ID_I210_SERDES 0x1536
+#define E1000_DEV_ID_I210_1000BASEKX 0x1537
+#define E1000_DEV_ID_I210_EXTPHY 0x1538
+#define E1000_DEV_ID_I211_COPPER 0x1539
+#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157b
+#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157c
+
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
+
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status,
+ Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special
+ control register */
+#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive false
+ Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet
+ Counter */
+#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error
+ Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error
+ Counter */
+#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive
+ Premature End Of Frame
+ Error Counter */
+#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of
+ Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber
+ Detect Counter */
+#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and
+ Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and
+ LED configuration */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control
+ (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto
+ reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power
+ state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power
+ state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T
+ polarity */
+#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY
+ address */
+#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed
+ result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation
+ duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down
+ disabled */
+#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity,
+ 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity
+ Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled,
+ 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT 5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
+
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X
+ feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X,
+ 0=force MDI */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm
+ is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT 6
+#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI
+ feature */
+#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed,
+ 0=failed */
+#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses
+ on the wire */
+#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
+#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication
+ type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to
+ the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
+#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2
+ off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+#define NODE_ADDRESS_SIZE 6
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 16
+
+#define MIN_NUMBER_OF_DESCRIPTORS 8
+#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ uint16_t length; /* Length of data DMAed into data buffer */
+ uint16_t csum; /* Packet checksum */
+ uint8_t status; /* Descriptor status */
+ uint8_t errors; /* Descriptor Errors */
+ uint16_t special;
+};
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ uint32_t data;
+ struct {
+ uint16_t length; /* Data buffer length */
+ uint8_t cso; /* Checksum offset */
+ uint8_t cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t css; /* Checksum start */
+ uint16_t special;
+ } fields;
+ } upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+
+/* Filters */
+#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
+#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_I210_EECD 0x12010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_I210_EERD 0x12014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_I210_IAM 0x000E0 /* Interrupt Ack Auto Mask - RW */
+#define E1000_RCTL 0x00100 /* RX Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
+#define E1000_TCTL 0x00400 /* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
+#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_I210_PHY_CTRL 0x00E14 /* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG 0x0001
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_I210_EEMNGCTL 0x12030 /* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_I210_EEWR 0x12018 /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
+#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
+#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
+#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
+#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
+#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
+#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
+#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
+#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
+#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
+#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
+#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
+#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
+#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
+#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
+#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL E1000_CTRL
+#define E1000_82542_STATUS E1000_STATUS
+#define E1000_82542_EECD E1000_EECD
+#define E1000_82542_EERD E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_MDIC E1000_MDIC
+#define E1000_82542_FCAL E1000_FCAL
+#define E1000_82542_FCAH E1000_FCAH
+#define E1000_82542_FCT E1000_FCT
+#define E1000_82542_VET E1000_VET
+#define E1000_82542_RA 0x00040
+#define E1000_82542_ICR E1000_ICR
+#define E1000_82542_ITR E1000_ITR
+#define E1000_82542_ICS E1000_ICS
+#define E1000_82542_IMS E1000_IMS
+#define E1000_82542_IMC E1000_IMC
+#define E1000_82542_RCTL E1000_RCTL
+#define E1000_82542_RDTR 0x00108
+#define E1000_82542_RDBAL 0x00110
+#define E1000_82542_RDBAH 0x00114
+#define E1000_82542_RDLEN 0x00118
+#define E1000_82542_RDH 0x00120
+#define E1000_82542_RDT 0x00128
+#define E1000_82542_FCRTH 0x00160
+#define E1000_82542_FCRTL 0x00168
+#define E1000_82542_FCTTV E1000_FCTTV
+#define E1000_82542_TXCW E1000_TXCW
+#define E1000_82542_RXCW E1000_RXCW
+#define E1000_82542_MTA 0x00200
+#define E1000_82542_TCTL E1000_TCTL
+#define E1000_82542_TIPG E1000_TIPG
+#define E1000_82542_TDBAL 0x00420
+#define E1000_82542_TDBAH 0x00424
+#define E1000_82542_TDLEN 0x00428
+#define E1000_82542_TDH 0x00430
+#define E1000_82542_TDT 0x00438
+#define E1000_82542_TIDV 0x00440
+#define E1000_82542_TBT E1000_TBT
+#define E1000_82542_AIT E1000_AIT
+#define E1000_82542_VFTA 0x00600
+#define E1000_82542_LEDCTL E1000_LEDCTL
+#define E1000_82542_PBA E1000_PBA
+#define E1000_82542_RXDCTL E1000_RXDCTL
+#define E1000_82542_RADV E1000_RADV
+#define E1000_82542_RSRPD E1000_RSRPD
+#define E1000_82542_TXDMAC E1000_TXDMAC
+#define E1000_82542_TXDCTL E1000_TXDCTL
+#define E1000_82542_TADV E1000_TADV
+#define E1000_82542_TSPMT E1000_TSPMT
+#define E1000_82542_CRCERRS E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS E1000_SYMERRS
+#define E1000_82542_RXERRC E1000_RXERRC
+#define E1000_82542_MPC E1000_MPC
+#define E1000_82542_SCC E1000_SCC
+#define E1000_82542_ECOL E1000_ECOL
+#define E1000_82542_MCC E1000_MCC
+#define E1000_82542_LATECOL E1000_LATECOL
+#define E1000_82542_COLC E1000_COLC
+#define E1000_82542_DC E1000_DC
+#define E1000_82542_TNCRS E1000_TNCRS
+#define E1000_82542_SEC E1000_SEC
+#define E1000_82542_CEXTERR E1000_CEXTERR
+#define E1000_82542_RLEC E1000_RLEC
+#define E1000_82542_XONRXC E1000_XONRXC
+#define E1000_82542_XONTXC E1000_XONTXC
+#define E1000_82542_XOFFRXC E1000_XOFFRXC
+#define E1000_82542_XOFFTXC E1000_XOFFTXC
+#define E1000_82542_FCRUC E1000_FCRUC
+#define E1000_82542_PRC64 E1000_PRC64
+#define E1000_82542_PRC127 E1000_PRC127
+#define E1000_82542_PRC255 E1000_PRC255
+#define E1000_82542_PRC511 E1000_PRC511
+#define E1000_82542_PRC1023 E1000_PRC1023
+#define E1000_82542_PRC1522 E1000_PRC1522
+#define E1000_82542_GPRC E1000_GPRC
+#define E1000_82542_BPRC E1000_BPRC
+#define E1000_82542_MPRC E1000_MPRC
+#define E1000_82542_GPTC E1000_GPTC
+#define E1000_82542_GORCL E1000_GORCL
+#define E1000_82542_GORCH E1000_GORCH
+#define E1000_82542_GOTCL E1000_GOTCL
+#define E1000_82542_GOTCH E1000_GOTCH
+#define E1000_82542_RNBC E1000_RNBC
+#define E1000_82542_RUC E1000_RUC
+#define E1000_82542_RFC E1000_RFC
+#define E1000_82542_ROC E1000_ROC
+#define E1000_82542_RJC E1000_RJC
+#define E1000_82542_MGTPRC E1000_MGTPRC
+#define E1000_82542_MGTPDC E1000_MGTPDC
+#define E1000_82542_MGTPTC E1000_MGTPTC
+#define E1000_82542_TORL E1000_TORL
+#define E1000_82542_TORH E1000_TORH
+#define E1000_82542_TOTL E1000_TOTL
+#define E1000_82542_TOTH E1000_TOTH
+#define E1000_82542_TPR E1000_TPR
+#define E1000_82542_TPT E1000_TPT
+#define E1000_82542_PTC64 E1000_PTC64
+#define E1000_82542_PTC127 E1000_PTC127
+#define E1000_82542_PTC255 E1000_PTC255
+#define E1000_82542_PTC511 E1000_PTC511
+#define E1000_82542_PTC1023 E1000_PTC1023
+#define E1000_82542_PTC1522 E1000_PTC1522
+#define E1000_82542_MPTC E1000_MPTC
+#define E1000_82542_BPTC E1000_BPTC
+#define E1000_82542_TSCTC E1000_TSCTC
+#define E1000_82542_TSCTFC E1000_TSCTFC
+#define E1000_82542_RXCSUM E1000_RXCSUM
+#define E1000_82542_WUC E1000_WUC
+#define E1000_82542_WUFC E1000_WUFC
+#define E1000_82542_WUS E1000_WUS
+#define E1000_82542_MANC E1000_MANC
+#define E1000_82542_IPAV E1000_IPAV
+#define E1000_82542_IP4AT E1000_IP4AT
+#define E1000_82542_IP6AT E1000_IP6AT
+#define E1000_82542_WUPL E1000_WUPL
+#define E1000_82542_WUPM E1000_WUPM
+#define E1000_82542_FFLT E1000_FFLT
+#define E1000_82542_FFMT E1000_FFMT
+#define E1000_82542_FFVT E1000_FFVT
+
+struct e1000_eeprom_info {
+ e1000_eeprom_type type;
+ uint16_t word_size;
+ uint16_t opcode_bits;
+ uint16_t address_bits;
+ uint16_t delay_usec;
+ uint16_t page_size;
+ bool use_eerd;
+ bool use_eewr;
+};
+
+#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM
+ read/write registers */
+#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start
+ operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write
+ complete */
+#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
+#define EEPROM_RESERVED_WORD 0xFFFF
+
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_PF_RST_DONE 0x00200000 /* PCI-X bus speed */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
+#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
+#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
+#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
+ * (0-small, 1-large) */
+
+#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT 22
+#define E1000_STM_OPCODE 0xDB00
+#define E1000_HICR_FW_RESET 0xC0
+
+#define E1000_SHADOW_RAM_WORDS 2048
+#define E1000_ICH_NVM_SIG_WORD 0x13
+#define E1000_ICH_NVM_SIG_MASK 0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START 0x00000001 /* Start Read */
+#define E1000_EERD_DONE 0x00000010 /* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT 6
+#define EEPROM_SIZE_SHIFT 10
+#define EEPROM_SIZE_MASK 0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT 0x0003
+#define EEPROM_ID_LED_SETTINGS 0x0004
+#define EEPROM_VERSION 0x0005
+#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude
+ adjustment. */
+#define EEPROM_PHY_CLASS_WORD 0x0007
+#define EEPROM_INIT_CONTROL1_REG 0x000A
+#define EEPROM_INIT_CONTROL2_REG 0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
+#define EEPROM_INIT_3GIO_3 0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
+#define EEPROM_CFG 0x0012
+#define EEPROM_FLASH_VERSION 0x0032
+#define EEPROM_CHECKSUM_REG 0x003F
+
+#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable
+ Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable
+ Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SWDPIN6 0x00000040 /* SWDPIN 6 value */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SWDPIN7 0x00000080 /* SWDPIN 7 value */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SWDPIO6 0x00000400 /* SWDPIN 6 Input or output */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_SWDPIO7 0x00000800 /* SWDPIN 7 Input or output */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+#define E1000_PHY_CTRL_B2B_EN 0x00000080
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Receive Address */
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD E1000_ICR_SRPD
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM 0x0001
+#define E1000_SWFW_PHY0_SM 0x0002
+#define E1000_SWFW_PHY1_SM 0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
+#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
+#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+#define E1000_RXDCTL_FULL_RX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
+ still to be processed. */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
+#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
+#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
+#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
+#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
+#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
+ * Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN 4096
+
+/* EEPROM Commands */
+#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */
+#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */
+#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */
+#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */
+#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define EEPROM_COMPAT_SERVER 0x0400
+#define EEPROM_COMPAT_CLIENT 0x0200
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS 0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST 0x0200
+#define EEPROM_WORD0A_FD 0x0400
+#define EEPROM_WORD0A_66MHZ 0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE 0x1000
+#define EEPROM_WORD0F_ASM_DIR 0x2000
+#define EEPROM_WORD0F_ANE 0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1 8
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 0xF
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLLISION_DISTANCE_82542 64
+#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_GB_HDX_COLLISION_DISTANCE 512
+#define E1000_COLD_SHIFT 12
+
+/* The number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START 8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP 190
+#define TX_THRESHOLD_DISABLE 0
+#define TX_THRESHOLD_TIMER_MS 10000
+#define MIN_NUM_XMITS 1000
+#define IFS_MAX 80
+#define IFS_STEP 10
+#define IFS_MIN 40
+#define IFS_RATIO 4
+
+/* PBA constants */
+#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
+#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
+#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
+
+/* Flow Control High-Watermark: 43464 bytes */
+#define E1000_FC_HIGH_THRESH 0xA9C8
+/* Flow Control Low-Watermark: 43456 bytes */
+#define E1000_FC_LOW_THRESH 0xA9C0
+/* Flow Control Pause Time: 858 usec */
+#define E1000_FC_PAUSE_TIME 0x0680
+
+/* The number of bits that we need to shift right to move the "pause"
+ * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field
+ * in the TXCW register
+ */
+#define PAUSE_SHIFT 5
+
+/* The number of bits that we need to shift left to move the "SWDPIO"
+ * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field
+ * in the CTRL register
+ */
+#define SWDPIO_SHIFT 17
+
+/* The number of bits that we need to shift left to move the "SWDPIO_EXT"
+ * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The
+ * Extended CTRL register.
+ * in the CTRL register
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+#define RECEIVE_BUFFER_ALIGN_SIZE (256)
+
+/* The number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT 500
+
+#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Regiser */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
+/* IGP01E1000 specifics */
+#define IGP01E1000_IEEE_REGS_PAGE 0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT 0x19
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A 0x1172
+#define IGP01E1000_PHY_AGC_B 0x1272
+#define IGP01E1000_PHY_AGC_C 0x1472
+#define IGP01E1000_PHY_AGC_D 0x1872
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
+#define IGP01E1000_PSCFR_PRE_EN 0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in
+ non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in
+ D0a mode */
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET 0x1F33
+#define IGP01E1000_PHY_DSP_SET 0x1F71
+#define IGP01E1000_PHY_DSP_FFE 0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+
+#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
+ * on Link-Up */
+#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal
+ Disabled */
+#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */
+#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter
+ Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI
+ configuration */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX
+ configuration */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic
+ crossover */
+#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended
+ Distance */
+#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300
+#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */
+#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only
+ (Energy Detect) */
+#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */
+#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */
+#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */
+#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000
+#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12
+
+/* PHY Specific Status Register (Page 0, Register 17) */
+#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */
+#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */
+#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */
+#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */
+#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */
+#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */
+#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */
+#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */
+#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
+#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */
+#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */
+#define GG82563_PSSR_SPEED_MASK 0xC000
+#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */
+#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */
+#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */
+
+/* PHY Specific Status Register 2 (Page 0, Register 19) */
+#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */
+#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */
+#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
+#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */
+#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */
+#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=false Carrier */
+#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */
+#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */
+#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */
+#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */
+#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */
+#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */
+#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative
+ Polarity */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C
+#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal
+ Operation */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns
+ Sequence */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns
+ Sequence */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse
+ Auto-Negotiation */
+#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable
+ 1000BASE-T */
+#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000
+#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */
+#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M;
+ 1 = 50-80M;
+ 2 = 80-110M;
+ 3 = 110-140M;
+ 4 = >140M */
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs,
+ 0=Kumeran Inband LEDs */
+#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */
+#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080
+#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400
+#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz,
+ 0=0.8MHz */
+#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES
+ Electrical Idle */
+#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */
+#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */
+#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse
+ Auto-Negotiation */
+#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps
+ Auto-Neg in non D0 */
+#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps
+ Auto-Neg Always */
+#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a
+ Reverse Auto-Negotiation */
+#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */
+
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL \
+ GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS \
+ GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE \
+ GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2 \
+ GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR \
+ GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT \
+ GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 \
+ GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT \
+ GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL \
+ GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL \
+ GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2 \
+ GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE \
+ GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL \
+ GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET \
+ GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID \
+ GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID \
+ GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL \
+ GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL \
+ GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+ GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL \
+ GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL \
+ GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC \
+ GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS \
+ GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY \
+ GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+ GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE \
+ GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+ GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC \
+ GG82563_REG(194, 26) /* Misc. */
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
+ /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
+ * 0=CLK125 toggling
+ */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
+ * 100BASE-TX/10BASE-T:
+ * MDI Mode
+ */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
+ * all speeds.
+ */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+ /* 1=Enable Extended 10BASE-T distance
+ * (Lower 10BASE-T RX Threshold)
+ * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+ /* 1=5-Bit interface in 100BASE-TX
+ * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
+ * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_MDIX_SHIFT 6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* Bit definitions for valid PHY IDs. */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define L1LXT971A_PHY_ID 0x001378E0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define I350_I_PHY_ID 0x015403B0
+
+#define BME1000_E_PHY_ID 0x01410CB0
+
+#define I210_I_PHY_ID 0x01410C00
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_SOF 0x01
+#define PHY_OP_READ 0x02
+#define PHY_OP_WRITE 0x01
+#define PHY_TURNAROUND 0x02
+#define PHY_PREAMBLE_SIZE 32
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+#define E1000_PHY_ADDRESS 0x01
+#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
+#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK 0x01E0
+#define REG9_SPEED_MASK 0x0300
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+
+#define ICH_FLASH_GFPREG 0x0000
+#define ICH_FLASH_HSFSTS 0x0004
+#define ICH_FLASH_HSFCTL 0x0006
+#define ICH_FLASH_FADDR 0x0008
+#define ICH_FLASH_FDATA0 0x0010
+#define ICH_FLASH_FRACC 0x0050
+#define ICH_FLASH_FREG0 0x0054
+#define ICH_FLASH_FREG1 0x0058
+#define ICH_FLASH_FREG2 0x005C
+#define ICH_FLASH_FREG3 0x0060
+#define ICH_FLASH_FPR0 0x0074
+#define ICH_FLASH_FPR1 0x0078
+#define ICH_FLASH_SSFSTS 0x0090
+#define ICH_FLASH_SSFCTL 0x0092
+#define ICH_FLASH_PREOP 0x0094
+#define ICH_FLASH_OPTYPE 0x0096
+#define ICH_FLASH_OPMENU 0x0098
+
+#define ICH_FLASH_REG_MAPSIZE 0x00A0
+#define ICH_FLASH_SECTOR_SIZE 4096
+#define ICH_GFPREG_BASE_MASK 0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI 0x01
+#define EEPROM_STATUS_WEN_SPI 0x02
+#define EEPROM_STATUS_BP0_SPI 0x04
+#define EEPROM_STATUS_BP1_SPI 0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
+#define E1000_FWSM_MODE_SHIFT 1
+#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT 29
+#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
+
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Inteface Control */
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A 0x8000
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
+#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
+
+#define E1000_KUMCTRLSTA_MASK 0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET 0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KUMCTRLSTA_REN 0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
+
+#define E1000_MNG_ICH_IAMT_MODE 0x2
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
+#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008
+#define AUTO_ALL_MODES 0
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE e1000_ms_hw_default
+#endif
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+
+#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+#define E1000_MC_TBL_SIZE_ICH8LAN 32
+
+#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers
+ after IMS clear */
+
+
+struct e1000_hw {
+ struct eth_device edev;
+
+ struct pci_dev *pdev;
+ struct device_d *dev;
+
+ void __iomem *hw_addr;
+
+ e1000_mac_type mac_type;
+ e1000_phy_type phy_type;
+ uint32_t txd_cmd;
+ e1000_media_type media_type;
+ e1000_fc_type fc;
+ struct e1000_eeprom_info eeprom;
+ uint32_t phy_id;
+ uint32_t phy_revision;
+ uint32_t original_fc;
+ uint32_t autoneg_failed;
+ uint16_t autoneg_advertised;
+ uint16_t pci_cmd_word;
+ uint16_t device_id;
+ uint16_t vendor_id;
+ uint8_t revision_id;
+ struct mii_bus miibus;
+
+ struct e1000_tx_desc *tx_base;
+ struct e1000_rx_desc *rx_base;
+ unsigned char *packet;
+
+ int tx_tail;
+ int rx_tail, rx_last;
+};
+
+int32_t e1000_init_eeprom_params(struct e1000_hw *hw);
+int e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words,
+ uint16_t *data);
+
+int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+
+
+#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
new file mode 100644
index 0000000..fb39a85
--- /dev/null
+++ b/drivers/net/e1000/eeprom.c
@@ -0,0 +1,747 @@
+#include <common.h>
+#include <init.h>
+#include <net.h>
+#include <malloc.h>
+
+#include "e1000.h"
+
+
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
+{
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
+{
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(50);
+
+ e1000_raise_ee_clk(hw, &eecd);
+ e1000_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while (mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+
+ /* In order to read a register from the EEPROM, we need to shift 'count'
+ * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+ * input to the EEPROM (setting the SK bit), and then reading the
+ * value of the "DO" bit. During this "shifting in" process the
+ * "DI" bit should always be clear.
+ */
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data = data << 1;
+ e1000_raise_ee_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DI);
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_ee_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ }
+}
+
+/***************************************************************************
+* Description: Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd = 0;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type == e1000_ich8lan)
+ return false;
+
+ if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Isolate bits 15 & 16 */
+ eecd = ((eecd >> 15) & 0x03);
+
+ /* If both bits are set, device is Flash type */
+ if (eecd == 0x03)
+ return false;
+ }
+ return true;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd, i = 0;
+
+ DEBUGFUNC();
+
+ if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+ return -E1000_ERR_SWFW_SYNC;
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Request EEPROM Access */
+ if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 &&
+ hw->mac_type != e1000_82574) {
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while ((!(eecd & E1000_EECD_GNT)) &&
+ (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+ i++;
+ udelay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if (!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ dev_dbg(hw->dev, "Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Setup EEPROM for Read/Write */
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ udelay(1);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Sets up eeprom variables in the hw struct. Must be called after mac_type
+ * is configured. Additionally, if this is ICH8, the flash controller GbE
+ * registers must be mapped, or this will crash.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ int32_t ret_val = E1000_SUCCESS;
+ uint16_t eeprom_size;
+
+ if (hw->mac_type == e1000_igb)
+ eecd = E1000_READ_REG(hw, I210_EECD);
+ else
+ eecd = E1000_READ_REG(hw, EECD);
+
+ DEBUGFUNC();
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->word_size = 64;
+ eeprom->opcode_bits = 3;
+ eeprom->address_bits = 6;
+ eeprom->delay_usec = 50;
+ eeprom->use_eerd = false;
+ eeprom->use_eewr = false;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_SIZE) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ eeprom->use_eerd = false;
+ eeprom->use_eewr = false;
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if (eecd & E1000_EECD_TYPE) {
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ } else {
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ }
+ eeprom->use_eerd = false;
+ eeprom->use_eewr = false;
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = false;
+ eeprom->use_eewr = false;
+ break;
+ case e1000_82573:
+ case e1000_82574:
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ if (e1000_is_onboard_nvm_eeprom(hw) == false) {
+ eeprom->use_eerd = true;
+ eeprom->use_eewr = true;
+
+ eeprom->type = e1000_eeprom_flash;
+ eeprom->word_size = 2048;
+
+ /* Ensure that the Autonomous FLASH update bit is cleared due to
+ * Flash update issue on parts which use a FLASH for NVM. */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+ break;
+ case e1000_80003es2lan:
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = true;
+ eeprom->use_eewr = false;
+ break;
+ case e1000_igb:
+ /* i210 has 4k of iNVM mapped as EEPROM */
+ eeprom->type = e1000_eeprom_invm;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ eeprom->use_eerd = true;
+ eeprom->use_eewr = false;
+ break;
+ default:
+ break;
+ }
+
+ if (eeprom->type == e1000_eeprom_spi ||
+ eeprom->type == e1000_eeprom_invm) {
+ /* eeprom_size will be an enum [0..8] that maps
+ * to eeprom sizes 128B to
+ * 32KB (incremented by powers of 2).
+ */
+ if (hw->mac_type <= e1000_82547_rev_2) {
+ /* Set to default value for initial eeprom read. */
+ eeprom->word_size = 64;
+ ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
+ &eeprom_size);
+ if (ret_val)
+ return ret_val;
+ eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
+ >> EEPROM_SIZE_SHIFT;
+ /* 256B eeprom size was not supported in earlier
+ * hardware, so we bump eeprom_size up one to
+ * ensure that "1" (which maps to 256B) is never
+ * the result used in the shifting logic below. */
+ if (eeprom_size)
+ eeprom_size++;
+ } else {
+ eeprom_size = (uint16_t)((eecd &
+ E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ }
+
+ eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+ }
+ return ret_val;
+}
+
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+{
+ uint32_t attempts = 100000;
+ uint32_t i, reg = 0;
+ int32_t done = E1000_ERR_EEPROM;
+
+ for (i = 0; i < attempts; i++) {
+ if (eerd == E1000_EEPROM_POLL_READ) {
+ if (hw->mac_type == e1000_igb)
+ reg = E1000_READ_REG(hw, I210_EERD);
+ else
+ reg = E1000_READ_REG(hw, EERD);
+ } else {
+ if (hw->mac_type == e1000_igb)
+ reg = E1000_READ_REG(hw, I210_EEWR);
+ else
+ reg = E1000_READ_REG(hw, EEWR);
+ }
+
+ if (reg & E1000_EEPROM_RW_REG_DONE) {
+ done = E1000_SUCCESS;
+ break;
+ }
+ udelay(5);
+ }
+
+ return done;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ uint32_t i, eerd = 0;
+ int32_t error = 0;
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+ E1000_EEPROM_RW_REG_START;
+
+ if (hw->mac_type == e1000_igb)
+ E1000_WRITE_REG(hw, I210_EERD, eerd);
+ else
+ E1000_WRITE_REG(hw, EERD, eerd);
+
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+ if (error)
+ break;
+
+ if (hw->mac_type == e1000_igb) {
+ data[i] = (E1000_READ_REG(hw, I210_EERD) >>
+ E1000_EEPROM_RW_REG_DATA);
+ } else {
+ data[i] = (E1000_READ_REG(hw, EERD) >>
+ E1000_EEPROM_RW_REG_DATA);
+ }
+
+ }
+
+ return error;
+}
+
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+
+ DEBUGFUNC();
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if (hw->eeprom.type == e1000_eeprom_spi) {
+ eecd |= E1000_EECD_CS; /* Pull CS high */
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ udelay(hw->eeprom.delay_usec);
+ } else if (hw->eeprom.type == e1000_eeprom_microwire) {
+ /* cleanup eeprom */
+
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+ }
+
+ /* Stop requesting EEPROM access */
+ if (hw->mac_type > e1000_82544) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+}
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+ uint16_t retry_count = 0;
+ uint8_t spi_stat_reg;
+
+ DEBUGFUNC();
+
+ /* Read "Status Register" repeatedly until the LSB is cleared. The
+ * EEPROM will signal that the command has been completed by clearing
+ * bit 0 of the internal status register. If it's not cleared within
+ * 5 milliseconds, then error out.
+ */
+ retry_count = 0;
+ do {
+ e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+ hw->eeprom.opcode_bits);
+ spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+ if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+ break;
+
+ udelay(5);
+ retry_count += 5;
+
+ e1000_standby_eeprom(hw);
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+ /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+ * only 0-5mSec on 5V devices)
+ */
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+ dev_dbg(hw->dev, "SPI EEPROM Status error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t i = 0;
+
+ DEBUGFUNC();
+
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ e1000_init_eeprom_params(hw);
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= eeprom->word_size) ||
+ (words > eeprom->word_size - offset) ||
+ (words == 0)) {
+ dev_dbg(hw->dev, "\"words\" parameter out of bounds."
+ "Words = %d, size = %d\n", offset, eeprom->word_size);
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+ * directly. In this case, we need to acquire the EEPROM so that
+ * FW or other port software does not interrupt.
+ */
+ if (e1000_is_onboard_nvm_eeprom(hw) == true &&
+ hw->eeprom.use_eerd == false) {
+
+ /* Prepare the EEPROM for bit-bang reading */
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Eerd register EEPROM access requires no eeprom aquire/release */
+ if (eeprom->use_eerd == true)
+ return e1000_read_eeprom_eerd(hw, offset, words, data);
+
+ /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
+ * acquired the EEPROM at this point, so any returns should relase it */
+ if (eeprom->type == e1000_eeprom_spi) {
+ uint16_t word_in;
+ uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+ if (e1000_spi_eeprom_ready(hw)) {
+ e1000_release_eeprom(hw);
+ return -E1000_ERR_EEPROM;
+ }
+
+ e1000_standby_eeprom(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in
+ * the opcode */
+ if ((eeprom->address_bits == 8) && (offset >= 128))
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
+ eeprom->address_bits);
+
+ /* Read the data. The address of the eeprom internally
+ * increments with each byte (spi) being read, saving on the
+ * overhead of eeprom setup and tear-down. The address
+ * counter will roll over if reading beyond the size of
+ * the eeprom, thus allowing the entire memory to be read
+ * starting from any offset. */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_ee_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+ } else if (eeprom->type == e1000_eeprom_microwire) {
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw,
+ EEPROM_READ_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+ eeprom->address_bits);
+
+ /* Read the data. For microwire, each word requires
+ * the overhead of eeprom setup and tear-down. */
+ data[i] = e1000_shift_in_ee_bits(hw, 16);
+ e1000_standby_eeprom(hw);
+ }
+ }
+
+ /* End this read operation */
+ e1000_release_eeprom(hw);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+ uint16_t i, checksum, checksum_reg;
+ uint16_t buf[EEPROM_CHECKSUM_REG + 1];
+
+ DEBUGFUNC();
+
+ /* Read the EEPROM */
+ if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
+ dev_err(&hw->edev.dev, "Unable to read EEPROM!\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Compute the checksum */
+ checksum = 0;
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+ checksum += buf[i];
+ checksum = ((uint16_t)EEPROM_SUM) - checksum;
+ checksum_reg = buf[i];
+
+ /* Verify it! */
+ if (checksum == checksum_reg)
+ return 0;
+
+ /* Hrm, verification failed, print an error */
+ dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n");
+ dev_err(&hw->edev.dev, " ...register was 0x%04hx, calculated 0x%04hx\n",
+ checksum_reg, checksum);
+
+ return -E1000_ERR_EEPROM;
+}
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
new file mode 100644
index 0000000..552b0dc
--- /dev/null
+++ b/drivers/net/e1000/main.c
@@ -0,0 +1,3681 @@
+/**************************************************************************
+Intel Pro 1000 for ppcboot/das-u-boot
+Drivers are port from Intel's Linux driver e1000-4.3.15
+and from Etherboot pro 1000 driver by mrakes at vivato dot net
+tested on both gig copper and gig fiber boards
+***************************************************************************/
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+
+ * SPDX-License-Identifier: GPL-2.0+
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+/*
+ * Copyright (C) Archway Digital Solutions.
+ *
+ * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
+ * 2/9/2002
+ *
+ * Copyright (C) Linux Networx.
+ * Massive upgrade to work with the new intel gigabit NICs.
+ * <ebiederman at lnxi dot com>
+ *
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ */
+
+#include <common.h>
+#include <init.h>
+#include <net.h>
+#include <malloc.h>
+#include <linux/pci.h>
+#include <dma.h>
+#include "e1000.h"
+
+static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr)
+{
+ return (u32)adr;
+}
+
+#define PCI_VENDOR_ID_INTEL 0x8086
+
+
+/* Function forward declarations */
+static int e1000_setup_link(struct e1000_hw *hw);
+static int e1000_setup_fiber_link(struct e1000_hw *hw);
+static int e1000_setup_copper_link(struct e1000_hw *hw);
+static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
+static void e1000_config_collision_dist(struct e1000_hw *hw);
+static int e1000_config_mac_to_phy(struct e1000_hw *hw);
+static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int e1000_wait_autoneg(struct e1000_hw *hw);
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+ uint16_t *duplex);
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t *phy_data);
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t phy_data);
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
+static int e1000_phy_reset(struct e1000_hw *hw);
+static int e1000_detect_gig_phy(struct e1000_hw *hw);
+static void e1000_set_media_type(struct e1000_hw *hw);
+
+
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
+
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+
+static bool e1000_media_copper(struct e1000_hw *hw)
+{
+ if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+ return 1;
+
+ return hw->media_type == e1000_media_type_copper;
+}
+
+static bool e1000_media_fiber(struct e1000_hw *hw)
+{
+ if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+ return 0;
+
+ return hw->media_type == e1000_media_type_fiber;
+}
+
+static bool e1000_media_fiber_serdes(struct e1000_hw *hw)
+{
+ if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+ return 0;
+
+ return hw->media_type == e1000_media_type_fiber ||
+ hw->media_type == e1000_media_type_internal_serdes;
+}
+
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ * 1. Do a PHY soft reset
+ * 2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t e1000_set_phy_mode(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC();
+
+ if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) {
+ ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
+ 1, &eeprom_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_PAGE_SELECT, 0x000B);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_GEN_CONTROL, 0x8104);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Obtaining software semaphore bit (SMBI) before resetting PHY.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ * E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_software_semaphore(struct e1000_hw *hw)
+{
+ int32_t timeout = hw->eeprom.word_size + 1;
+ uint32_t swsm;
+
+ DEBUGFUNC();
+
+ swsm = E1000_READ_REG(hw, SWSM);
+ swsm &= ~E1000_SWSM_SMBI;
+ E1000_WRITE_REG(hw, SWSM, swsm);
+
+ if (hw->mac_type != e1000_80003es2lan)
+ return E1000_SUCCESS;
+
+ while (timeout) {
+ swsm = E1000_READ_REG(hw, SWSM);
+ /* If SMBI bit cleared, it is now set and we hold
+ * the semaphore */
+ if (!(swsm & E1000_SWSM_SMBI))
+ return 0;
+ mdelay(1);
+ timeout--;
+ }
+
+ dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n");
+ return -E1000_ERR_RESET;
+}
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+ uint32_t swsm;
+
+ swsm = E1000_READ_REG(hw, SWSM);
+
+ if (hw->mac_type == e1000_80003es2lan)
+ /* Release both semaphores. */
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+ else
+ swsm &= ~(E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ * E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+ int32_t timeout;
+ uint32_t swsm;
+
+ if (hw->mac_type == e1000_80003es2lan) {
+ /* Get the SW semaphore. */
+ if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Get the FW semaphore. */
+ timeout = hw->eeprom.word_size + 1;
+ while (timeout) {
+ swsm = E1000_READ_REG(hw, SWSM);
+ swsm |= E1000_SWSM_SWESMBI;
+ E1000_WRITE_REG(hw, SWSM, swsm);
+ /* if we managed to set the bit we got the semaphore. */
+ swsm = E1000_READ_REG(hw, SWSM);
+ if (swsm & E1000_SWSM_SWESMBI)
+ break;
+
+ udelay(50);
+ timeout--;
+ }
+
+ if (!timeout) {
+ /* Release semaphores */
+ e1000_put_hw_eeprom_semaphore(hw);
+ dev_dbg(hw->dev, "Driver can't access the Eeprom - "
+ "SWESMBI bit is set.\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return E1000_SUCCESS;
+}
+
+int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
+{
+ uint32_t swfw_sync = 0;
+ uint32_t swmask = mask;
+ uint32_t fwmask = mask << 16;
+ int32_t timeout = 200;
+
+ DEBUGFUNC();
+ while (timeout) {
+ if (e1000_get_hw_eeprom_semaphore(hw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /* firmware currently using resource (fwmask) */
+ /* or other software thread currently using resource (swmask) */
+ e1000_put_hw_eeprom_semaphore(hw);
+ mdelay(5);
+ timeout--;
+ }
+
+ if (!timeout) {
+ dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n");
+ return -E1000_ERR_SWFW_SYNC;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_eeprom_semaphore(hw);
+ return E1000_SUCCESS;
+}
+
+static bool e1000_is_second_port(struct e1000_hw *hw)
+{
+ switch (hw->mac_type) {
+ case e1000_80003es2lan:
+ case e1000_82546:
+ case e1000_82571:
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ return true;
+ /* Fallthrough */
+ default:
+ return false;
+ }
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * edev - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr)
+{
+ struct e1000_hw *hw = edev->priv;
+ uint16_t eeprom_data;
+ uint32_t reg_data = 0;
+ int i;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type == e1000_igb) {
+ /* i210 preloads MAC address into RAL/RAH registers */
+ reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
+ adr[0] = reg_data & 0xff;
+ adr[1] = (reg_data >> 8) & 0xff;
+ adr[2] = (reg_data >> 16) & 0xff;
+ adr[3] = (reg_data >> 24) & 0xff;
+ reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
+ adr[4] = reg_data & 0xff;
+ adr[5] = (reg_data >> 8) & 0xff;
+ return 0;
+ }
+
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) {
+ dev_dbg(hw->dev, "EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ adr[i] = eeprom_data & 0xff;
+ adr[i + 1] = (eeprom_data >> 8) & 0xff;
+ }
+
+ /* Invert the last bit if this is the second device */
+ if (e1000_is_second_port(hw))
+ adr[5] ^= 1;
+
+ return 0;
+}
+
+static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr)
+{
+ struct e1000_hw *hw = edev->priv;
+ uint32_t addr_low;
+ uint32_t addr_high;
+
+ DEBUGFUNC();
+
+ dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n");
+
+ addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24));
+ addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+ return 0;
+}
+
+/******************************************************************************
+ * Clears the VLAN filter table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+ uint32_t offset;
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_set_mac_type(struct e1000_hw *hw)
+{
+ DEBUGFUNC();
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ switch (hw->revision_id) {
+ case E1000_82542_2_0_REV_ID:
+ hw->mac_type = e1000_82542_rev2_0;
+ break;
+ case E1000_82542_2_1_REV_ID:
+ hw->mac_type = e1000_82542_rev2_1;
+ break;
+ default:
+ /* Invalid 82542 revision ID */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ hw->mac_type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ hw->mac_type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ hw->mac_type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ hw->mac_type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ hw->mac_type = e1000_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ hw->mac_type = e1000_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ hw->mac_type = e1000_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
+ hw->mac_type = e1000_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ hw->mac_type = e1000_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ case E1000_DEV_ID_82547EI_MOBILE:
+ hw->mac_type = e1000_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ hw->mac_type = e1000_82547_rev_2;
+ break;
+ case E1000_DEV_ID_82571EB_COPPER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571PT_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+ hw->mac_type = e1000_82571;
+ break;
+ case E1000_DEV_ID_82572EI_COPPER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82572EI_SERDES:
+ case E1000_DEV_ID_82572EI:
+ hw->mac_type = e1000_82572;
+ break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ case E1000_DEV_ID_82573L:
+ hw->mac_type = e1000_82573;
+ break;
+ case E1000_DEV_ID_82574L:
+ hw->mac_type = e1000_82574;
+ break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+ case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->mac_type = e1000_80003es2lan;
+ break;
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IFE_G:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ hw->mac_type = e1000_ich8lan;
+ break;
+ case E1000_DEV_ID_I350_COPPER:
+ case E1000_DEV_ID_I210_UNPROGRAMMED:
+ case E1000_DEV_ID_I211_UNPROGRAMMED:
+ case E1000_DEV_ID_I210_COPPER:
+ case E1000_DEV_ID_I211_COPPER:
+ case E1000_DEV_ID_I210_COPPER_FLASHLESS:
+ case E1000_DEV_ID_I210_SERDES:
+ case E1000_DEV_ID_I210_SERDES_FLASHLESS:
+ case E1000_DEV_ID_I210_1000BASEKX:
+ hw->mac_type = e1000_igb;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_reset_hw(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t reg;
+
+ DEBUGFUNC();
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
+ pci_write_config_word(hw->pdev, PCI_COMMAND,
+ hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+ }
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ mdelay(10);
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ dev_dbg(hw->dev, "Issuing a global reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+ /* Force a reload from the EEPROM if necessary */
+ if (hw->mac_type == e1000_igb) {
+ mdelay(20);
+ reg = E1000_READ_REG(hw, STATUS);
+ if (reg & E1000_STATUS_PF_RST_DONE)
+ dev_dbg(hw->dev, "PF OK\n");
+ reg = E1000_READ_REG(hw, I210_EECD);
+ if (reg & E1000_EECD_AUTO_RD)
+ dev_dbg(hw->dev, "EEC OK\n");
+ } else if (hw->mac_type < e1000_82540) {
+ uint32_t ctrl_ext;
+
+ /* Wait for reset to complete */
+ udelay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ /* Wait for EEPROM reload */
+ mdelay(2);
+ } else {
+ uint32_t manc;
+
+ /* Wait for EEPROM reload (it happens automatically) */
+ mdelay(4);
+ /* Dissable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ if (hw->mac_type == e1000_igb)
+ E1000_WRITE_REG(hw, I210_IAM, 0);
+
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+
+ if (hw->mac_type != e1000_igb) {
+ if (hw->mac_type < e1000_82571)
+ E1000_WRITE_REG(hw, PBA, 0x00000030);
+ else
+ E1000_WRITE_REG(hw, PBA, 0x000a0026);
+ }
+}
+
+/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * This function contains hardware limitation workarounds for PCI-E adapters
+ *
+ *****************************************************************************/
+static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+ uint32_t reg_ctrl, reg_ctrl_ext;
+ uint32_t reg_tarc0, reg_tarc1;
+ uint32_t reg_txdctl, reg_txdctl1;
+
+ if (hw->mac_type < e1000_82571)
+ return;
+
+ /* Settings common to all PCI-express silicon */
+
+ /* link autonegotiation/sync workarounds */
+ reg_tarc0 = E1000_READ_REG(hw, TARC0);
+ reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27));
+
+ /* Enable not-done TX descriptor counting */
+ reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+ reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+ reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+ switch (hw->mac_type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* Clear PHY TX compatible mode bits */
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ reg_tarc1 &= ~((1 << 30) | (1 << 29));
+
+ /* link autonegotiation/sync workarounds */
+ reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23);
+
+ /* TX ring control fixes */
+ reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24);
+
+ /* Multiple read bit is reversed polarity */
+ if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case e1000_82573:
+ case e1000_82574:
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext &= ~(1 << 23);
+ reg_ctrl_ext |= (1 << 22);
+
+ /* TX byte count fix */
+ reg_ctrl = E1000_READ_REG(hw, CTRL);
+ reg_ctrl &= ~(1 << 29);
+
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+ E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+ break;
+ case e1000_80003es2lan:
+ /* improve small packet performace for fiber/serdes */
+ if (e1000_media_fiber_serdes(hw))
+ reg_tarc0 &= ~(1 << 20);
+
+ /* Multiple read bit is reversed polarity */
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case e1000_ich8lan:
+ /* Reduce concurrent DMA requests to 3 from 4 */
+ if ((hw->revision_id < 3) ||
+ ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+ (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+ reg_tarc0 |= (1 << 29) | (1 << 28);
+
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext |= (1 << 22);
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+ /* workaround TX hang with TSO=on */
+ reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23);
+
+ /* Multiple read bit is reversed polarity */
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ /* workaround TX hang with TSO=on */
+ reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24);
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case e1000_igb:
+ return;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+}
+
+static int e1000_open(struct eth_device *edev)
+{
+ struct e1000_hw *hw = edev->priv;
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint32_t ctrl;
+ uint32_t reg_data;
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = e1000_setup_link(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Set the transmit descriptor write-back policy */
+ if (hw->mac_type > e1000_82544) {
+ ctrl = E1000_READ_REG(hw, TXDCTL);
+ ctrl &= ~E1000_TXDCTL_WTHRESH;
+ ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL, ctrl);
+ }
+
+ /* Set the receive descriptor write back policy */
+ if (hw->mac_type >= e1000_82571) {
+ ctrl = E1000_READ_REG(hw, RXDCTL);
+ ctrl &= ~E1000_RXDCTL_WTHRESH;
+ ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB;
+ E1000_WRITE_REG(hw, RXDCTL, ctrl);
+ }
+
+ switch (hw->mac_type) {
+ case e1000_80003es2lan:
+ /* Enable retransmit on late collisions */
+ reg_data = E1000_READ_REG(hw, TCTL);
+ reg_data |= E1000_TCTL_RTLC;
+ E1000_WRITE_REG(hw, TCTL, reg_data);
+
+ /* Configure Gigabit Carry Extend Padding */
+ reg_data = E1000_READ_REG(hw, TCTL_EXT);
+ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+ reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+ E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+ /* Configure Transmit Inter-Packet Gap */
+ reg_data = E1000_READ_REG(hw, TIPG);
+ reg_data &= ~E1000_TIPG_IPGT_MASK;
+ reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+ E1000_WRITE_REG(hw, TIPG, reg_data);
+
+ reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+ reg_data &= ~0x00100000;
+ E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+ /* Fall through */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_ich8lan:
+ ctrl = E1000_READ_REG(hw, TXDCTL1);
+ ctrl &= ~E1000_TXDCTL_WTHRESH;
+ ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+ break;
+ case e1000_82573:
+ case e1000_82574:
+ reg_data = E1000_READ_REG(hw, GCR);
+ reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ E1000_WRITE_REG(hw, GCR, reg_data);
+ case e1000_igb:
+ default:
+ break;
+ }
+
+ if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+ hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ /* Relaxed ordering must be disabled to avoid a parity
+ * error crash in a PCI slot. */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ return 0;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+static int e1000_setup_link(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint32_t ctrl_ext;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC();
+
+ /* In the case of the phy reset being blocked, we already have a link.
+ * We do not have to set it up again. */
+ if (e1000_check_phy_reset_block(hw))
+ return E1000_SUCCESS;
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
+ &eeprom_data) < 0) {
+ dev_dbg(hw->dev, "EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ switch (hw->mac_type) {
+ case e1000_ich8lan:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_igb:
+ hw->fc = e1000_fc_full;
+ break;
+ default:
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+ if (ret_val) {
+ dev_dbg(hw->dev, "EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = e1000_fc_none;
+ else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
+ hw->fc = e1000_fc_tx_pause;
+ else
+ hw->fc = e1000_fc_full;
+ break;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ hw->fc &= ~e1000_fc_tx_pause;
+
+ hw->original_fc = hw->fc;
+
+ dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before e1000_setup_pcs_link()
+ * or e1000_phy_setup() is called.
+ */
+ if (hw->mac_type == e1000_82543) {
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ if (e1000_media_fiber(hw))
+ ret_val = e1000_setup_fiber_link(hw);
+ else
+ ret_val = e1000_setup_copper_link(hw);
+
+ if (ret_val < 0)
+ return ret_val;
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n");
+
+ /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+ if (hw->mac_type != e1000_ich8lan) {
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ }
+
+ E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc & e1000_fc_tx_pause) {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
+ E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ }
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int e1000_setup_fiber_link(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal;
+
+ DEBUGFUNC();
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+ signal = E1000_CTRL_SWDPIN1;
+ else
+ signal = 0;
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ e1000_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = E1000_TXCW_ANE | E1000_TXCW_FD;
+ break;
+ case e1000_fc_rx_pause:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
+ break;
+ case e1000_fc_tx_pause:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR;
+ break;
+ case e1000_fc_full:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
+ break;
+ default:
+ dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-neogtiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw);
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ mdelay(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ */
+ if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ dev_dbg(hw->dev, "Looking for Link\n");
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ mdelay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == (LINK_UP_TIMEOUT / 10)) {
+ /* AutoNeg failed to achieve a link, so we'll call
+ * e1000_check_for_link. This routine will force the link up if we
+ * detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ return -E1000_ERR_NOLINK;
+ } else {
+ hw->autoneg_failed = 0;
+ dev_dbg(hw->dev, "Valid Link Found\n");
+ }
+ } else {
+ dev_dbg(hw->dev, "No Signal Detected\n");
+ return -E1000_ERR_NOLINK;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Make sure we have a valid PHY and change PHY mode before link setup.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if (hw->mac_type > e1000_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
+ | E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = e1000_detect_gig_phy(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id);
+
+ /* Set PHY to class A mode (if necessary) */
+ ret_val = e1000_set_phy_mode(hw);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == e1000_82545_rev_3) ||
+ (hw->mac_type == e1000_82546_rev_3)) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ phy_data |= 0x00000008;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag. When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
+{
+ uint32_t phy_ctrl = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC();
+
+ /* During driver activity LPLU should not be used or it will attain link
+ * from the lowest speeds starting from 10Mbps. The capability is used
+ * for Dx transitions and states */
+ if (hw->mac_type == e1000_82541_rev_2
+ || hw->mac_type == e1000_82547_rev_2) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->mac_type == e1000_ich8lan) {
+ /* MAC writes into PHY register based on the state transition
+ * and start auto-negotiation. SW driver can overwrite the
+ * settings in CSR PHY power control E1000_PHY_CTRL register. */
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ } else {
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (hw->mac_type == e1000_ich8lan) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag. When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
+{
+ uint32_t phy_ctrl = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC();
+
+ if (hw->mac_type <= e1000_82547_rev_2)
+ return E1000_SUCCESS;
+
+ if (hw->mac_type == e1000_ich8lan) {
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else if (hw->mac_type == e1000_igb) {
+ phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
+ } else {
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP02E1000_PM_D0_LPLU;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+ uint32_t led_ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
+ mdelay(15);
+ if (hw->mac_type != e1000_ich8lan) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+
+ /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+ if (hw->phy_type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state_off(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Disabling LPLU D3\n");
+ return ret_val;
+ }
+ }
+
+ /* disable lplu d0 during driver init */
+ ret_val = e1000_set_d0_lplu_state_off(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Disabling LPLU D0\n");
+ return ret_val;
+ }
+
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ /* Force MDI for earlier revs of the IGP PHY */
+ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
+ | IGP01E1000_PSCR_FORCE_MDI_MDIX);
+ } else {
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ /* when autonegotiation advertisment is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default. */
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns - true when the mode is IAMT or false.
+ ****************************************************************************/
+static bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ uint32_t fwsm;
+
+ DEBUGFUNC();
+
+ fwsm = E1000_READ_REG(hw, FWSM);
+
+ if (hw->mac_type == e1000_ich8lan) {
+ if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return true;
+ } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return true;
+
+ return false;
+}
+
+static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
+{
+ uint16_t swfw = E1000_SWFW_PHY0_SM;
+ uint32_t reg_val;
+ DEBUGFUNC();
+
+ if (e1000_is_second_port(hw))
+ swfw = E1000_SWFW_PHY1_SM;
+
+ if (e1000_swfw_sync_acquire(hw, swfw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
+ & E1000_KUMCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ udelay(2);
+
+ return E1000_SUCCESS;
+}
+
+static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
+{
+ uint16_t swfw = E1000_SWFW_PHY0_SM;
+ uint32_t reg_val;
+ DEBUGFUNC();
+
+ if (e1000_is_second_port(hw))
+ swfw = E1000_SWFW_PHY1_SM;
+
+ if (e1000_swfw_sync_acquire(hw, swfw)) {
+ debug("%s[%i]\n", __func__, __LINE__);
+ return -E1000_ERR_SWFW_SYNC;
+ }
+
+ /* Write register address */
+ reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+ E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
+ E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ udelay(2);
+
+ /* Read the data returned */
+ reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+ *data = (uint16_t)reg_val;
+
+ return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_gg82563 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+ uint32_t reg_data;
+
+ DEBUGFUNC();
+
+ /* Enable CRS on TX for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw,
+ GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+ phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+ ret_val = e1000_write_phy_reg(hw,
+ GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Bypass RX and TX FIFO's */
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+ E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
+ | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ reg_data = E1000_READ_REG(hw, CTRL_EXT);
+ reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Do not init these registers when the HW is in IAMT mode, since the
+ * firmware will have already initialized them. We only initialize
+ * them if the HW is not in IAMT mode.
+ */
+ if (e1000_check_mng_mode(hw) == false) {
+ /* Enable Electrical Idle on the PHY */
+ phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = e1000_write_phy_reg(hw,
+ GG82563_PHY_PWR_MGMT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1000_write_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL, phy_data);
+
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Workaround: Disable padding in Kumeran interface in the MAC
+ * and in the PHY to avoid CRC errors.
+ */
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data |= GG82563_ICR_DIS_PADDING;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_revision < M88E1011_I_REV_4) {
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1000_read_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((hw->phy_revision == E1000_REVISION_2) &&
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
+ /* Vidalia Phy, set the downshift counter to 5x */
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
+ | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
+ | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* IFE phy only supports 10/100 */
+ if (hw->phy_type == e1000_phy_ife)
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
+ dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ dev_dbg(hw->dev, "Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+* 1) Set up the MAC to the current PHY speed/duplex
+* if we are on 82543. If we
+* are on newer silicon, we only need to configure
+* collision distance in the Transmit Control Register.
+* 2) Set up flow control on the MAC to that established with
+* the link partner.
+* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ DEBUGFUNC();
+
+ if (hw->mac_type >= e1000_82544) {
+ e1000_config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val) {
+ dev_dbg(hw->dev, "Error Configuring Flow Control\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int e1000_setup_copper_link(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+ uint16_t reg_data;
+
+ DEBUGFUNC();
+
+ switch (hw->mac_type) {
+ case e1000_80003es2lan:
+ case e1000_ich8lan:
+ /* Set the mac to wait the maximum time between each
+ * iteration and increase the max iterations when
+ * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
+ if (ret_val)
+ return ret_val;
+
+ reg_data |= 0x3F;
+
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+ if (ret_val)
+ return ret_val;
+ default:
+ break;
+ }
+
+ /* Check if it is a valid PHY and set PHY mode if necessary. */
+ ret_val = e1000_copper_link_preconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ switch (hw->mac_type) {
+ case e1000_80003es2lan:
+ /* Kumeran registers are written-only */
+ reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+ reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ break;
+ }
+
+ if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 ||
+ hw->phy_type == e1000_phy_igp_2) {
+ ret_val = e1000_copper_link_igp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) {
+ ret_val = e1000_copper_link_mgp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == e1000_phy_gg82563) {
+ ret_val = e1000_copper_link_ggp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for (i = 0; i < 10; i++) {
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ /* Config the MAC and PHY after link is up */
+ ret_val = e1000_copper_link_postconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ dev_dbg(hw->dev, "Valid link established!!!\n");
+ return E1000_SUCCESS;
+ }
+ udelay(10);
+ }
+
+ dev_dbg(hw->dev, "Unable to establish link!!!\n");
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+
+ DEBUGFUNC();
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_type != e1000_phy_ife) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ } else
+ mii_1000t_ctrl_reg = 0;
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ dev_dbg(hw->dev, "Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ dev_dbg(hw->dev, "Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ dev_dbg(hw->dev, "Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ dev_dbg(hw->dev, "Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ pr_debug
+ ("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (hw->phy_type != e1000_phy_ife) {
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+static void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ uint32_t tctl, coll_dist;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type < e1000_82543)
+ coll_dist = E1000_COLLISION_DISTANCE_82542;
+ else
+ coll_dist = E1000_COLLISION_DISTANCE;
+
+ tctl = E1000_READ_REG(hw, TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= coll_dist << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_ILOS);
+ ctrl |= (E1000_CTRL_SPD_SEL);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+ else
+ ctrl &= ~E1000_CTRL_FD;
+
+ e1000_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC();
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+
+ DEBUGFUNC();
+
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n");
+ return 0;
+ }
+
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | e1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->original_fc == e1000_fc_full) {
+ hw->fc = e1000_fc_full;
+ dev_dbg(hw->dev, "Flow Control = FULL.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ *
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = e1000_fc_tx_pause;
+ dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = e1000_fc_rx_pause;
+ dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if (hw->original_fc == e1000_fc_none ||
+ hw->original_fc == e1000_fc_tx_pause) {
+ hw->fc = e1000_fc_none;
+ dev_dbg(hw->dev, "Flow Control = NONE.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (duplex == HALF_DUPLEX)
+ hw->fc = e1000_fc_none;
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc(hw);
+ if (ret_val < 0) {
+ dev_dbg(hw->dev, "Error forcing flow control settings\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configure the MAC-to-PHY interface for 10/100Mbps
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+{
+ int32_t ret_val = E1000_SUCCESS;
+ uint32_t tipg;
+ uint16_t reg_data;
+
+ DEBUGFUNC();
+
+ reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+ E1000_WRITE_REG(hw, TIPG, tipg);
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
+
+ if (ret_val)
+ return ret_val;
+
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+ else
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+ return ret_val;
+}
+
+static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+{
+ int32_t ret_val = E1000_SUCCESS;
+ uint16_t reg_data;
+ uint32_t tipg;
+
+ DEBUGFUNC();
+
+ reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+ ret_val = e1000_write_kmrn_reg(hw,
+ E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+ E1000_WRITE_REG(hw, TIPG, tipg);
+
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
+
+ if (ret_val)
+ return ret_val;
+
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+ uint16_t *duplex)
+{
+ uint32_t status;
+ int32_t ret_val;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ dev_dbg(hw->dev, "1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ dev_dbg(hw->dev, "100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ dev_dbg(hw->dev, "10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ dev_dbg(hw->dev, "Full Duplex\r\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ dev_dbg(hw->dev, " Half Duplex\r\n");
+ }
+ } else {
+ dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+
+ if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) {
+ if (*speed == SPEED_1000)
+ ret_val = e1000_configure_kmrn_for_1000(hw);
+ else
+ ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+ dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ dev_dbg(hw->dev, "PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+ dev_dbg(hw->dev, "Auto-Neg complete.\n");
+ return 0;
+ }
+ mdelay(100);
+ }
+ dev_dbg(hw->dev, "Auto-Neg timedout.\n");
+ return -E1000_ERR_TIMEOUT;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
+ uint16_t count)
+{
+ uint32_t ctrl;
+ uint32_t mask;
+
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(2);
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ e1000_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ return data;
+}
+
+static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
+{
+ struct e1000_hw *hw = bus->priv;
+ uint32_t i;
+ uint32_t mdic = 0;
+
+ if (phy_addr != 1)
+ return -EIO;
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ udelay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ dev_dbg(hw->dev, "MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ dev_dbg(hw->dev, "MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ return e1000_shift_in_mdi_bits(hw);
+ }
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t *phy_data)
+{
+ int ret;
+
+ ret = e1000_phy_read(&hw->miibus, 1, reg_addr);
+ if (ret < 0)
+ return ret;
+
+ *phy_data = ret;
+
+ return 0;
+}
+
+static int e1000_phy_write(struct mii_bus *bus, int phy_addr,
+ int reg_addr, u16 phy_data)
+{
+ struct e1000_hw *hw = bus->priv;
+ uint32_t i;
+ uint32_t mdic = 0;
+
+ if (phy_addr != 1)
+ return -EIO;
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ udelay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ dev_dbg(hw->dev, "MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ e1000_shift_out_mdi_bits(hw, mdic, 32);
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Writes a value to a PHY register
+ *
+ * hw - Struct containing variables accessed by shared code
+ * reg_addr - address of the PHY register to write
+ * data - data to write to the PHY
+ ******************************************************************************/
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
+{
+ return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data);
+}
+
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ * E1000_SUCCESS
+ *
+ *****************************************************************************/
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+ if (hw->mac_type == e1000_ich8lan) {
+ if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY)
+ return E1000_SUCCESS;
+ else
+ return E1000_BLK_PHY_RESET;
+ }
+
+ if (hw->mac_type > e1000_82547_rev_2) {
+ if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
+ return E1000_BLK_PHY_RESET;
+ else
+ return E1000_SUCCESS;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ * E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+ int32_t timeout = PHY_CFG_TIMEOUT;
+ uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+
+ DEBUGFUNC();
+
+ switch (hw->mac_type) {
+ default:
+ mdelay(10);
+ break;
+
+ case e1000_80003es2lan:
+ /* Separate *_CFG_DONE_* bit for each port */
+ if (e1000_is_second_port(hw))
+ cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+ /* Fall Through */
+
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_igb:
+ while (timeout) {
+ if (hw->mac_type == e1000_igb) {
+ if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
+ break;
+ } else {
+ if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+ break;
+ }
+ mdelay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n");
+ return -E1000_ERR_RESET;
+ }
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ uint16_t swfw = E1000_SWFW_PHY0_SM;
+ uint32_t ctrl, ctrl_ext;
+ uint32_t led_ctrl;
+ int32_t ret_val;
+
+ DEBUGFUNC();
+
+ /* In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset. */
+ ret_val = e1000_check_phy_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+
+ dev_dbg(hw->dev, "Resetting Phy...\n");
+
+ if (hw->mac_type > e1000_82543) {
+ if (e1000_is_second_port(hw))
+ swfw = E1000_SWFW_PHY1_SM;
+
+ if (e1000_swfw_sync_acquire(hw, swfw)) {
+ dev_dbg(hw->dev, "Unable to acquire swfw sync\n");
+ return -E1000_ERR_SWFW_SYNC;
+ }
+
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(100);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ if (hw->mac_type >= e1000_82571)
+ mdelay(10);
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ udelay(150);
+
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+
+ /* Wait for FW to finish PHY configuration. */
+ return e1000_get_phy_cfg_done(hw);
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+ uint32_t ret_val;
+ uint16_t phy_saved_data;
+
+ DEBUGFUNC();
+
+ switch (hw->mac_type) {
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ break;
+ default:
+ return;
+ }
+
+ mdelay(20);
+
+ /* Save off the current value of register 0x2F5B to be
+ * restored at the end of this routine. */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ mdelay(20);
+
+ e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+ mdelay(5);
+
+ switch (hw->mac_type) {
+ case e1000_82541:
+ case e1000_82547:
+ e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+ e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+ e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+ e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+ e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+ e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+ e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+ e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+ e1000_write_phy_reg(hw, 0x2010, 0x0008);
+ break;
+
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+ mdelay(20);
+
+ /* Now enable the transmitter */
+ if (!ret_val)
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac_type == e1000_82547) {
+ uint16_t fused, fine, coarse;
+
+ /* Move to analog registers page */
+ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse >
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -=
+ IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse
+ == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+ e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control register
+******************************************************************************/
+static int32_t e1000_phy_reset(struct e1000_hw *hw)
+{
+ uint16_t phy_data;
+ int ret;
+
+ DEBUGFUNC();
+
+ /*
+ * In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset.
+ */
+ if (e1000_check_phy_reset_block(hw))
+ return E1000_SUCCESS;
+
+ switch (hw->phy_type) {
+ case e1000_phy_igp:
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ case e1000_phy_ife:
+ case e1000_phy_igb:
+ ret = e1000_phy_hw_reset(hw);
+ if (ret)
+ return ret;
+ break;
+ default:
+ ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret)
+ return ret;
+
+ phy_data |= MII_CR_RESET;
+ ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret)
+ return ret;
+
+ udelay(1);
+ break;
+ }
+
+ if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+ e1000_phy_init_script(hw);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_id_high, phy_id_low;
+ e1000_phy_type phy_type = e1000_phy_undefined;
+
+ DEBUGFUNC();
+
+ /* The 82571 firmware may still be configuring the PHY. In this
+ * case, we cannot access the PHY until the configuration is done. So
+ * we explicitly set the PHY values. */
+ if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+ hw->phy_id = IGP01E1000_I_PHY_ID;
+ hw->phy_type = e1000_phy_igp_2;
+ return E1000_SUCCESS;
+ }
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ udelay(20);
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+ hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+ switch (hw->mac_type) {
+ case e1000_82543:
+ if (hw->phy_id == M88E1000_E_PHY_ID)
+ phy_type = e1000_phy_m88;
+ break;
+ case e1000_82544:
+ if (hw->phy_id == M88E1000_I_PHY_ID)
+ phy_type = e1000_phy_m88;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (hw->phy_id == M88E1011_I_PHY_ID)
+ phy_type = e1000_phy_m88;
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if (hw->phy_id == IGP01E1000_I_PHY_ID)
+ phy_type = e1000_phy_igp;
+
+ break;
+ case e1000_82573:
+ if (hw->phy_id == M88E1111_I_PHY_ID)
+ phy_type = e1000_phy_m88;
+ break;
+ case e1000_82574:
+ if (hw->phy_id == BME1000_E_PHY_ID)
+ phy_type = e1000_phy_bm;
+ break;
+ case e1000_80003es2lan:
+ if (hw->phy_id == GG82563_E_PHY_ID)
+ phy_type = e1000_phy_gg82563;
+ break;
+ case e1000_ich8lan:
+ if (hw->phy_id == IGP03E1000_E_PHY_ID)
+ phy_type = e1000_phy_igp_3;
+ if (hw->phy_id == IFE_E_PHY_ID)
+ phy_type = e1000_phy_ife;
+ if (hw->phy_id == IFE_PLUS_E_PHY_ID)
+ phy_type = e1000_phy_ife;
+ if (hw->phy_id == IFE_C_E_PHY_ID)
+ phy_type = e1000_phy_ife;
+ break;
+ case e1000_igb:
+ if (hw->phy_id == I210_I_PHY_ID)
+ phy_type = e1000_phy_igb;
+ if (hw->phy_id == I350_I_PHY_ID)
+ phy_type = e1000_phy_igb;
+ break;
+ default:
+ dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+
+ if (!phy_type == e1000_phy_undefined) {
+ dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -EINVAL;
+ }
+
+ hw->phy_type = phy_type;
+
+ return 0;
+}
+
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+static void e1000_set_media_type(struct e1000_hw *hw)
+{
+ DEBUGFUNC();
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82572EI_SERDES:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->media_type = e1000_media_type_internal_serdes;
+ return;
+ default:
+ break;
+ }
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ hw->media_type = e1000_media_type_fiber;
+ return;
+ case e1000_ich8lan:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_igb:
+ /* The STATUS_TBIMODE bit is reserved or reused
+ * for the this device.
+ */
+ hw->media_type = e1000_media_type_copper;
+ return;
+ default:
+ break;
+ }
+
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE)
+ hw->media_type = e1000_media_type_fiber;
+ else
+ hw->media_type = e1000_media_type_copper;
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int e1000_sw_init(struct eth_device *edev)
+{
+ struct e1000_hw *hw = edev->priv;
+ int result;
+
+ /* PCI config space info */
+ pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
+ pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
+ pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
+ pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+ /* identify the MAC */
+ result = e1000_set_mac_type(hw);
+ if (result) {
+ dev_err(&hw->edev.dev, "Unknown MAC Type\n");
+ return result;
+ }
+
+ return E1000_SUCCESS;
+}
+
+static void fill_rx(struct e1000_hw *hw)
+{
+ volatile struct e1000_rx_desc *rd;
+ volatile u32 *bla;
+ int i;
+
+ hw->rx_last = hw->rx_tail;
+ rd = hw->rx_base + hw->rx_tail;
+ hw->rx_tail = (hw->rx_tail + 1) % 8;
+
+ bla = (void *)rd;
+ for (i = 0; i < 4; i++)
+ *bla++ = 0;
+
+ rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet);
+
+ E1000_WRITE_REG(hw, RDT, hw->rx_tail);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_hw *hw)
+{
+ unsigned long tctl;
+ unsigned long tipg, tarc;
+ uint32_t ipgr1, ipgr2;
+
+ E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base);
+ E1000_WRITE_REG(hw, TDBAH, 0);
+
+ E1000_WRITE_REG(hw, TDLEN, 128);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(hw, TDH, 0);
+ E1000_WRITE_REG(hw, TDT, 0);
+ hw->tx_tail = 0;
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ if (hw->mac_type <= e1000_82547_rev_2 &&
+ (hw->media_type == e1000_media_type_fiber ||
+ hw->media_type == e1000_media_type_internal_serdes))
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+ ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+ break;
+ case e1000_80003es2lan:
+ ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+ ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
+ break;
+ default:
+ ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+ ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+ break;
+ }
+ tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+ E1000_WRITE_REG(hw, TIPG, tipg);
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(hw, TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+ if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+ tarc = E1000_READ_REG(hw, TARC0);
+ /* set the speed mode bit, we'll clear it if we're not at
+ * gigabit link later */
+ /* git bit can be set to 1*/
+ } else if (hw->mac_type == e1000_80003es2lan) {
+ tarc = E1000_READ_REG(hw, TARC0);
+ tarc |= 1;
+ E1000_WRITE_REG(hw, TARC0, tarc);
+ tarc = E1000_READ_REG(hw, TARC1);
+ tarc |= 1;
+ E1000_WRITE_REG(hw, TARC1, tarc);
+ }
+
+
+ e1000_config_collision_dist(hw);
+ /* Setup Transmit Descriptor Settings for eop descriptor */
+ hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+ /* Need to set up RS bit */
+ if (hw->mac_type < e1000_82543)
+ hw->txd_cmd |= E1000_TXD_CMD_RPS;
+ else
+ hw->txd_cmd |= E1000_TXD_CMD_RS;
+
+
+ if (hw->mac_type == e1000_igb) {
+ uint32_t reg_txdctl;
+
+ E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
+
+ reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl |= 1 << 25;
+ E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+ mdelay(20);
+ }
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control register
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_hw *hw)
+{
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, RCTL);
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
+ | E1000_RCTL_RDMTS_HALF; /* |
+ (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
+
+ rctl &= ~E1000_RCTL_SBP;
+
+ rctl &= ~(E1000_RCTL_SZ_4096);
+ rctl |= E1000_RCTL_SZ_2048;
+ rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
+ E1000_WRITE_REG(hw, RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void e1000_configure_rx(struct e1000_hw *hw)
+{
+ unsigned long rctl, ctrl_ext;
+
+ hw->rx_tail = 0;
+ /* make sure receives are disabled while setting up the descriptors */
+ rctl = E1000_READ_REG(hw, RCTL);
+ E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
+ if (hw->mac_type >= e1000_82540) {
+ /* Set the interrupt throttling rate. Value is calculated
+ * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
+#define MAX_INTS_PER_SEC 8000
+#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
+ E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
+ }
+
+ if (hw->mac_type >= e1000_82571) {
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ /* Reset delay timers after every interrupt */
+ ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base);
+ E1000_WRITE_REG(hw, RDBAH, 0);
+
+ E1000_WRITE_REG(hw, RDLEN, 128);
+
+ /* Setup the HW Rx Head and Tail Descriptor Pointers */
+ E1000_WRITE_REG(hw, RDH, 0);
+ E1000_WRITE_REG(hw, RDT, 0);
+ /* Enable Receives */
+
+ if (hw->mac_type == e1000_igb) {
+ uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
+ reg_rxdctl |= 1 << 25;
+ E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
+ mdelay(20);
+ }
+
+ E1000_WRITE_REG(hw, RCTL, rctl);
+
+ fill_rx(hw);
+}
+
+static int e1000_poll(struct eth_device *edev)
+{
+ struct e1000_hw *hw = edev->priv;
+ volatile struct e1000_rx_desc *rd;
+ uint32_t len;
+
+ rd = hw->rx_base + hw->rx_last;
+
+ if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
+ return 0;
+
+ len = le32_to_cpu(rd->length);
+
+ dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE);
+
+ net_receive(edev, (uchar *)hw->packet, len);
+ fill_rx(hw);
+ return 1;
+}
+
+static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
+{
+ void *nv_packet = (void *)txpacket;
+ struct e1000_hw *hw = edev->priv;
+ volatile struct e1000_tx_desc *txp;
+ uint64_t to;
+
+ txp = hw->tx_base + hw->tx_tail;
+ hw->tx_tail = (hw->tx_tail + 1) % 8;
+
+ txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
+ txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
+ txp->upper.data = 0;
+
+ dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE);
+
+ E1000_WRITE_REG(hw, TDT, hw->tx_tail);
+
+ E1000_WRITE_FLUSH(hw);
+
+ to = get_time_ns();
+ while (1) {
+ if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
+ break;
+ if (is_timeout(to, MSECOND)) {
+ dev_dbg(hw->dev, "e1000: tx timeout\n");
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void e1000_disable(struct eth_device *edev)
+{
+ struct e1000_hw *hw = edev->priv;
+
+ /* Turn off the ethernet interface */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, 0);
+
+ /* Clear the transmit ring */
+ E1000_WRITE_REG(hw, TDH, 0);
+ E1000_WRITE_REG(hw, TDT, 0);
+
+ /* Clear the receive ring */
+ E1000_WRITE_REG(hw, RDH, 0);
+ E1000_WRITE_REG(hw, RDT, 0);
+
+ mdelay(10);
+}
+
+static int e1000_init(struct eth_device *edev)
+{
+ struct e1000_hw *hw = edev->priv;
+ uint32_t i;
+ uint32_t mta_size;
+ uint32_t reg_data;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type >= e1000_82544)
+ E1000_WRITE_REG(hw, WUC, 0);
+
+ /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
+ if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) ||
+ ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+ (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+ reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data &= ~0x80000000;
+ E1000_WRITE_REG(hw, STATUS, reg_data);
+ }
+
+ /* Set the media type and TBI compatibility */
+ e1000_set_media_type(hw);
+
+ /* Must be called after e1000_set_media_type
+ * because media_type is used */
+ e1000_initialize_hardware_bits(hw);
+
+ /* Disabling VLAN filtering. */
+ /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+ if (hw->mac_type != e1000_ich8lan) {
+ if (hw->mac_type < e1000_82545_rev_3)
+ E1000_WRITE_REG(hw, VET, 0);
+ e1000_clear_vfta(hw);
+ }
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
+ pci_write_config_word(hw->pdev, PCI_COMMAND,
+ hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(5);
+ }
+
+ for (i = 1; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(1);
+ pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+ }
+
+ /* Zero out the Multicast HASH table */
+ mta_size = E1000_MC_TBL_SIZE;
+ if (hw->mac_type == e1000_ich8lan)
+ mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+
+ for (i = 0; i < mta_size; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ /* use write flush to prevent Memory Write Block (MWB) from
+ * occuring when accessing our register space */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* More time needed for PHY to initialize */
+ if (hw->mac_type == e1000_ich8lan)
+ mdelay(15);
+ if (hw->mac_type == e1000_igb)
+ mdelay(15);
+
+ e1000_configure_tx(hw);
+ e1000_configure_rx(hw);
+ e1000_setup_rctl(hw);
+
+ return 0;
+}
+
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ struct e1000_hw *hw;
+ struct eth_device *edev;
+ int ret;
+
+ pci_enable_device(pdev);
+ pci_set_master(pdev);
+
+ hw = xzalloc(sizeof(*hw));
+
+ hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN);
+ hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN);
+ hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN);
+
+ edev = &hw->edev;
+
+ hw->pdev = pdev;
+ hw->dev = &pdev->dev;
+ pdev->dev.priv = hw;
+ edev->priv = hw;
+
+ hw->hw_addr = pci_iomap(pdev, 0);
+
+ /* MAC and Phy settings */
+ if (e1000_sw_init(edev) < 0) {
+ dev_err(&pdev->dev, "Software init failed\n");
+ return -EINVAL;
+ }
+
+ if (e1000_check_phy_reset_block(hw))
+ dev_err(&pdev->dev, "PHY Reset is blocked!\n");
+
+ /* Basic init was OK, reset the hardware and allow SPI access */
+ e1000_reset_hw(hw);
+
+ /* Validate the EEPROM and get chipset information */
+ if (e1000_init_eeprom_params(hw)) {
+ dev_err(&pdev->dev, "EEPROM is invalid!\n");
+ return -EINVAL;
+ }
+ if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
+ e1000_validate_eeprom_checksum(hw))
+ return -EINVAL;
+
+ e1000_get_ethaddr(edev, edev->ethaddr);
+
+ /* Set up the function pointers and register the device */
+ edev->init = e1000_init;
+ edev->recv = e1000_poll;
+ edev->send = e1000_transmit;
+ edev->halt = e1000_disable;
+ edev->open = e1000_open;
+ edev->get_ethaddr = e1000_get_ethaddr;
+ edev->set_ethaddr = e1000_set_ethaddr;
+
+ hw->miibus.read = e1000_phy_read;
+ hw->miibus.write = e1000_phy_write;
+ hw->miibus.priv = hw;
+ hw->miibus.parent = &edev->dev;
+
+ ret = eth_register(edev);
+ if (ret)
+ return ret;
+
+ /*
+ * The e1000 driver does its own phy handling, but registering
+ * the phy allows to show the phy registers for debugging purposes.
+ */
+ ret = mdiobus_register(&hw->miibus);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static void e1000_remove(struct pci_dev *pdev)
+{
+ struct e1000_hw *hw = pdev->dev.priv;
+
+ e1000_disable(&hw->edev);
+}
+
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), },
+ /* E1000 PCIe card */
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), },
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), },
+ { /* sentinel */ }
+};
+
+static struct pci_driver e1000_eth_driver = {
+ .name = "e1000",
+ .id_table = e1000_pci_tbl,
+ .probe = e1000_probe,
+ .remove = e1000_remove,
+};
+
+static int e1000_driver_init(void)
+{
+ return pci_register_driver(&e1000_eth_driver);
+}
+device_initcall(e1000_driver_init);
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 02/21] e1000: Include <net.h> in e1000.h
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
2016-05-31 17:09 ` [PATCH 01/21] e1000: Split driver into multiple files Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 03/21] e1000: Convert E1000_*_REG macros to functions Andrey Smirnov
` (18 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
That header(e1000.h) uses a number of definitions from net.h, so for it
to be self-contained it needs to include that file. This change also
allows to remove includes of net.h from other files.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 1 +
drivers/net/e1000/eeprom.c | 1 -
drivers/net/e1000/main.c | 1 -
3 files changed, 1 insertion(+), 2 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 82ff32e..19faf0b 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -17,6 +17,7 @@
*/
#include <io.h>
+#include <net.h>
#ifndef _E1000_HW_H_
#define _E1000_HW_H_
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index fb39a85..cc9199b 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -1,6 +1,5 @@
#include <common.h>
#include <init.h>
-#include <net.h>
#include <malloc.h>
#include "e1000.h"
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 552b0dc..f5eb086 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -31,7 +31,6 @@ tested on both gig copper and gig fiber boards
#include <common.h>
#include <init.h>
-#include <net.h>
#include <malloc.h>
#include <linux/pci.h>
#include <dma.h>
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 03/21] e1000: Convert E1000_*_REG macros to functions
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
2016-05-31 17:09 ` [PATCH 01/21] e1000: Split driver into multiple files Andrey Smirnov
2016-05-31 17:09 ` [PATCH 02/21] e1000: Include <net.h> in e1000.h Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 04/21] e1000: Fix a bug in e1000_detect_gig_phy Andrey Smirnov
` (17 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
E1000_*_REG don't bring any value by being macros and implicit appending
of "E1000_" prefix to the constant name only makes thing harder to grep
or understand. Replace those macros with functions.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/Makefile | 2 +-
drivers/net/e1000/e1000.h | 22 ++-
drivers/net/e1000/eeprom.c | 102 ++++++------
drivers/net/e1000/main.c | 404 ++++++++++++++++++++++-----------------------
drivers/net/e1000/regio.c | 29 ++++
5 files changed, 293 insertions(+), 266 deletions(-)
create mode 100644 drivers/net/e1000/regio.c
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 08166d2..42ea208 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -10,7 +10,7 @@ obj-$(CONFIG_DRIVER_NET_CPSW) += cpsw.o
obj-$(CONFIG_DRIVER_NET_DAVINCI_EMAC) += davinci_emac.o
obj-$(CONFIG_DRIVER_NET_DESIGNWARE) += designware.o
obj-$(CONFIG_DRIVER_NET_DM9K) += dm9k.o
-obj-$(CONFIG_DRIVER_NET_E1000) += e1000/main.o e1000/eeprom.o
+obj-$(CONFIG_DRIVER_NET_E1000) += e1000/regio.o e1000/main.o e1000/eeprom.o
obj-$(CONFIG_DRIVER_NET_ENC28J60) += enc28j60.o
obj-$(CONFIG_DRIVER_NET_EP93XX) += ep93xx.o
obj-$(CONFIG_DRIVER_NET_ETHOC) += ethoc.o
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 19faf0b..7c5c98b 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -28,18 +28,6 @@
#define DEBUGFUNC() do { } while (0)
#endif
-/* I/O wrapper functions */
-#define E1000_WRITE_REG(a, reg, value) \
- writel((value), ((a)->hw_addr + E1000_##reg))
-#define E1000_READ_REG(a, reg) \
- readl((a)->hw_addr + E1000_##reg)
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
- writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))
-#define E1000_READ_REG_ARRAY(a, reg, offset) \
- readl((a)->hw_addr + E1000_##reg + ((offset) << 2))
-#define E1000_WRITE_FLUSH(a) \
- do { E1000_READ_REG(a, STATUS); } while (0)
-
/* Enumerated types specific to the e1000 hardware */
/* Media Access Controlers */
typedef enum {
@@ -2128,6 +2116,16 @@ struct e1000_hw {
int rx_tail, rx_last;
};
+void e1000_write_reg(struct e1000_hw *hw, uint32_t reg,
+ uint32_t value);
+uint32_t e1000_read_reg(struct e1000_hw *hw, uint32_t reg);
+uint32_t e1000_read_reg_array(struct e1000_hw *hw,
+ uint32_t base, uint32_t idx);
+void e1000_write_reg_array(struct e1000_hw *hw, uint32_t base,
+ uint32_t idx, uint32_t value);
+
+void e1000_write_flush(struct e1000_hw *hw);
+
int32_t e1000_init_eeprom_params(struct e1000_hw *hw);
int e1000_validate_eeprom_checksum(struct e1000_hw *hw);
int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index cc9199b..c16f69a 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -18,8 +18,8 @@ static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
* wait 50 microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, *eecd);
+ e1000_write_flush(hw);
udelay(50);
}
@@ -35,8 +35,8 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, *eecd);
+ e1000_write_flush(hw);
udelay(50);
}
@@ -57,7 +57,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
@@ -70,8 +70,8 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t
if (data & mask)
eecd |= E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(50);
@@ -84,7 +84,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
}
/******************************************************************************
@@ -105,7 +105,7 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
* "DI" bit should always be clear.
*/
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
@@ -114,7 +114,7 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO)
@@ -136,40 +136,40 @@ static void e1000_standby_eeprom(struct e1000_hw *hw)
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(eeprom->delay_usec);
}
}
@@ -189,7 +189,7 @@ static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
return false;
if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
@@ -218,23 +218,23 @@ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
return -E1000_ERR_SWFW_SYNC;
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 &&
hw->mac_type != e1000_82574) {
eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ eecd = e1000_read_reg(hw, E1000_EECD);
while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
dev_dbg(hw->dev, "Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
@@ -245,15 +245,15 @@ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
udelay(1);
}
@@ -275,9 +275,9 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
uint16_t eeprom_size;
if (hw->mac_type == e1000_igb)
- eecd = E1000_READ_REG(hw, I210_EECD);
+ eecd = e1000_read_reg(hw, E1000_I210_EECD);
else
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
DEBUGFUNC();
@@ -379,7 +379,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
/* Ensure that the Autonomous FLASH update bit is cleared due to
* Flash update issue on parts which use a FLASH for NVM. */
eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
}
break;
case e1000_80003es2lan:
@@ -456,14 +456,14 @@ static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
for (i = 0; i < attempts; i++) {
if (eerd == E1000_EEPROM_POLL_READ) {
if (hw->mac_type == e1000_igb)
- reg = E1000_READ_REG(hw, I210_EERD);
+ reg = e1000_read_reg(hw, E1000_I210_EERD);
else
- reg = E1000_READ_REG(hw, EERD);
+ reg = e1000_read_reg(hw, E1000_EERD);
} else {
if (hw->mac_type == e1000_igb)
- reg = E1000_READ_REG(hw, I210_EEWR);
+ reg = e1000_read_reg(hw, E1000_I210_EEWR);
else
- reg = E1000_READ_REG(hw, EEWR);
+ reg = e1000_read_reg(hw, E1000_EEWR);
}
if (reg & E1000_EEPROM_RW_REG_DONE) {
@@ -497,9 +497,9 @@ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
E1000_EEPROM_RW_REG_START;
if (hw->mac_type == e1000_igb)
- E1000_WRITE_REG(hw, I210_EERD, eerd);
+ e1000_write_reg(hw, E1000_I210_EERD, eerd);
else
- E1000_WRITE_REG(hw, EERD, eerd);
+ e1000_write_reg(hw, E1000_EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
@@ -507,10 +507,10 @@ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
break;
if (hw->mac_type == e1000_igb) {
- data[i] = (E1000_READ_REG(hw, I210_EERD) >>
+ data[i] = (e1000_read_reg(hw, E1000_I210_EERD) >>
E1000_EEPROM_RW_REG_DATA);
} else {
- data[i] = (E1000_READ_REG(hw, EERD) >>
+ data[i] = (e1000_read_reg(hw, E1000_EERD) >>
E1000_EEPROM_RW_REG_DATA);
}
@@ -525,13 +525,13 @@ static void e1000_release_eeprom(struct e1000_hw *hw)
DEBUGFUNC();
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
udelay(hw->eeprom.delay_usec);
} else if (hw->eeprom.type == e1000_eeprom_microwire) {
@@ -540,25 +540,25 @@ static void e1000_release_eeprom(struct e1000_hw *hw)
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_write_reg(hw, E1000_EECD, eecd);
}
}
/******************************************************************************
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index f5eb086..f3c0ed8 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -147,15 +147,15 @@ static int32_t e1000_get_software_semaphore(struct e1000_hw *hw)
DEBUGFUNC();
- swsm = E1000_READ_REG(hw, SWSM);
+ swsm = e1000_read_reg(hw, E1000_SWSM);
swsm &= ~E1000_SWSM_SMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
+ e1000_write_reg(hw, E1000_SWSM, swsm);
if (hw->mac_type != e1000_80003es2lan)
return E1000_SUCCESS;
while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
+ swsm = e1000_read_reg(hw, E1000_SWSM);
/* If SMBI bit cleared, it is now set and we hold
* the semaphore */
if (!(swsm & E1000_SWSM_SMBI))
@@ -180,7 +180,7 @@ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
uint32_t swsm;
- swsm = E1000_READ_REG(hw, SWSM);
+ swsm = e1000_read_reg(hw, E1000_SWSM);
if (hw->mac_type == e1000_80003es2lan)
/* Release both semaphores. */
@@ -188,7 +188,7 @@ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
else
swsm &= ~(E1000_SWSM_SWESMBI);
- E1000_WRITE_REG(hw, SWSM, swsm);
+ e1000_write_reg(hw, E1000_SWSM, swsm);
}
/***************************************************************************
@@ -216,11 +216,11 @@ static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
+ swsm = e1000_read_reg(hw, E1000_SWSM);
swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
+ e1000_write_reg(hw, E1000_SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
+ swsm = e1000_read_reg(hw, E1000_SWSM);
if (swsm & E1000_SWSM_SWESMBI)
break;
@@ -250,7 +250,7 @@ int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+ swfw_sync = e1000_read_reg(hw, E1000_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
@@ -267,7 +267,7 @@ int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
}
swfw_sync |= swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+ e1000_write_reg(hw, E1000_SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS;
@@ -279,7 +279,7 @@ static bool e1000_is_second_port(struct e1000_hw *hw)
case e1000_80003es2lan:
case e1000_82546:
case e1000_82571:
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ if (e1000_read_reg(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
return true;
/* Fallthrough */
default:
@@ -304,12 +304,12 @@ static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr)
if (hw->mac_type == e1000_igb) {
/* i210 preloads MAC address into RAL/RAH registers */
- reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
+ reg_data = e1000_read_reg_array(hw, E1000_RA, 0);
adr[0] = reg_data & 0xff;
adr[1] = (reg_data >> 8) & 0xff;
adr[2] = (reg_data >> 16) & 0xff;
adr[3] = (reg_data >> 24) & 0xff;
- reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
+ reg_data = e1000_read_reg_array(hw, E1000_RA, 1);
adr[4] = reg_data & 0xff;
adr[5] = (reg_data >> 8) & 0xff;
return 0;
@@ -344,8 +344,8 @@ static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr)
addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24));
addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV);
- E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
- E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+ e1000_write_reg_array(hw, E1000_RA, 0, addr_low);
+ e1000_write_reg_array(hw, E1000_RA, 1, addr_high);
return 0;
}
@@ -360,7 +360,7 @@ static void e1000_clear_vfta(struct e1000_hw *hw)
uint32_t offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+ e1000_write_reg_array(hw, E1000_VFTA, offset, 0);
}
/******************************************************************************
@@ -524,9 +524,9 @@ static void e1000_reset_hw(struct e1000_hw *hw)
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_RCTL, 0);
+ e1000_write_reg(hw, E1000_TCTL, E1000_TCTL_PSP);
+ e1000_write_flush(hw);
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
@@ -539,17 +539,17 @@ static void e1000_reset_hw(struct e1000_hw *hw)
* clearing, and should clear within a microsecond.
*/
dev_dbg(hw->dev, "Issuing a global reset to MAC\n");
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ e1000_write_reg(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
/* Force a reload from the EEPROM if necessary */
if (hw->mac_type == e1000_igb) {
mdelay(20);
- reg = E1000_READ_REG(hw, STATUS);
+ reg = e1000_read_reg(hw, E1000_STATUS);
if (reg & E1000_STATUS_PF_RST_DONE)
dev_dbg(hw->dev, "PF OK\n");
- reg = E1000_READ_REG(hw, I210_EECD);
+ reg = e1000_read_reg(hw, E1000_I210_EECD);
if (reg & E1000_EECD_AUTO_RD)
dev_dbg(hw->dev, "EEC OK\n");
} else if (hw->mac_type < e1000_82540) {
@@ -557,10 +557,10 @@ static void e1000_reset_hw(struct e1000_hw *hw)
/* Wait for reset to complete */
udelay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_write_flush(hw);
/* Wait for EEPROM reload */
mdelay(2);
} else {
@@ -569,19 +569,19 @@ static void e1000_reset_hw(struct e1000_hw *hw)
/* Wait for EEPROM reload (it happens automatically) */
mdelay(4);
/* Dissable HW ARPs on ASF enabled adapters */
- manc = E1000_READ_REG(hw, MANC);
+ manc = e1000_read_reg(hw, E1000_MANC);
manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
+ e1000_write_reg(hw, E1000_MANC, manc);
}
/* Clear interrupt mask to stop board from generating interrupts */
if (hw->mac_type == e1000_igb)
- E1000_WRITE_REG(hw, I210_IAM, 0);
+ e1000_write_reg(hw, E1000_I210_IAM, 0);
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
+ e1000_write_reg(hw, E1000_IMC, 0xffffffff);
/* Clear any pending interrupt events. */
- E1000_READ_REG(hw, ICR);
+ e1000_read_reg(hw, E1000_ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0)
@@ -589,9 +589,9 @@ static void e1000_reset_hw(struct e1000_hw *hw)
if (hw->mac_type != e1000_igb) {
if (hw->mac_type < e1000_82571)
- E1000_WRITE_REG(hw, PBA, 0x00000030);
+ e1000_write_reg(hw, E1000_PBA, 0x00000030);
else
- E1000_WRITE_REG(hw, PBA, 0x000a0026);
+ e1000_write_reg(hw, E1000_PBA, 0x000a0026);
}
}
@@ -616,23 +616,23 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
/* Settings common to all PCI-express silicon */
/* link autonegotiation/sync workarounds */
- reg_tarc0 = E1000_READ_REG(hw, TARC0);
+ reg_tarc0 = e1000_read_reg(hw, E1000_TARC0);
reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27));
/* Enable not-done TX descriptor counting */
- reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl = e1000_read_reg(hw, E1000_TXDCTL);
reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
- E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+ e1000_write_reg(hw, E1000_TXDCTL, reg_txdctl);
- reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+ reg_txdctl1 = e1000_read_reg(hw, E1000_TXDCTL1);
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
- E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+ e1000_write_reg(hw, E1000_TXDCTL1, reg_txdctl1);
switch (hw->mac_type) {
case e1000_82571:
case e1000_82572:
/* Clear PHY TX compatible mode bits */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
reg_tarc1 &= ~((1 << 30) | (1 << 29));
/* link autonegotiation/sync workarounds */
@@ -642,25 +642,25 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24);
/* Multiple read bit is reversed polarity */
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_82573:
case e1000_82574:
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_ctrl_ext &= ~(1 << 23);
reg_ctrl_ext |= (1 << 22);
/* TX byte count fix */
- reg_ctrl = E1000_READ_REG(hw, CTRL);
+ reg_ctrl = e1000_read_reg(hw, E1000_CTRL);
reg_ctrl &= ~(1 << 29);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
- E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+ e1000_write_reg(hw, E1000_CTRL_EXT, reg_ctrl_ext);
+ e1000_write_reg(hw, E1000_CTRL, reg_ctrl);
break;
case e1000_80003es2lan:
/* improve small packet performace for fiber/serdes */
@@ -668,13 +668,13 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
reg_tarc0 &= ~(1 << 20);
/* Multiple read bit is reversed polarity */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
+ if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_ich8lan:
/* Reduce concurrent DMA requests to 3 from 4 */
@@ -683,16 +683,16 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
reg_tarc0 |= (1 << 29) | (1 << 28);
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_ctrl_ext |= (1 << 22);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+ e1000_write_reg(hw, E1000_CTRL_EXT, reg_ctrl_ext);
/* workaround TX hang with TSO=on */
reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23);
/* Multiple read bit is reversed polarity */
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+ reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
+ if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
@@ -700,7 +700,7 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
/* workaround TX hang with TSO=on */
reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24);
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_igb:
return;
@@ -708,7 +708,7 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
break;
}
- E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+ e1000_write_reg(hw, E1000_TARC0, reg_tarc0);
}
static int e1000_open(struct eth_device *edev)
@@ -726,56 +726,56 @@ static int e1000_open(struct eth_device *edev)
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
+ ctrl = e1000_read_reg(hw, E1000_TXDCTL);
ctrl &= ~E1000_TXDCTL_WTHRESH;
ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
+ e1000_write_reg(hw, E1000_TXDCTL, ctrl);
}
/* Set the receive descriptor write back policy */
if (hw->mac_type >= e1000_82571) {
- ctrl = E1000_READ_REG(hw, RXDCTL);
+ ctrl = e1000_read_reg(hw, E1000_RXDCTL);
ctrl &= ~E1000_RXDCTL_WTHRESH;
ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB;
- E1000_WRITE_REG(hw, RXDCTL, ctrl);
+ e1000_write_reg(hw, E1000_RXDCTL, ctrl);
}
switch (hw->mac_type) {
case e1000_80003es2lan:
/* Enable retransmit on late collisions */
- reg_data = E1000_READ_REG(hw, TCTL);
+ reg_data = e1000_read_reg(hw, E1000_TCTL);
reg_data |= E1000_TCTL_RTLC;
- E1000_WRITE_REG(hw, TCTL, reg_data);
+ e1000_write_reg(hw, E1000_TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
- reg_data = E1000_READ_REG(hw, TCTL_EXT);
+ reg_data = e1000_read_reg(hw, E1000_TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
- E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+ e1000_write_reg(hw, E1000_TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
- reg_data = E1000_READ_REG(hw, TIPG);
+ reg_data = e1000_read_reg(hw, E1000_TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, reg_data);
+ e1000_write_reg(hw, E1000_TIPG, reg_data);
- reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+ reg_data = e1000_read_reg_array(hw, E1000_FFLT, 1);
reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+ e1000_write_reg_array(hw, E1000_FFLT, 1, reg_data);
/* Fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
- ctrl = E1000_READ_REG(hw, TXDCTL1);
+ ctrl = e1000_read_reg(hw, E1000_TXDCTL1);
ctrl &= ~E1000_TXDCTL_WTHRESH;
ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+ e1000_write_reg(hw, E1000_TXDCTL1, ctrl);
break;
case e1000_82573:
case e1000_82574:
- reg_data = E1000_READ_REG(hw, GCR);
+ reg_data = e1000_read_reg(hw, E1000_GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- E1000_WRITE_REG(hw, GCR, reg_data);
+ e1000_write_reg(hw, E1000_GCR, reg_data);
case e1000_igb:
default:
break;
@@ -783,11 +783,11 @@ static int e1000_open(struct eth_device *edev)
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot. */
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
}
return 0;
@@ -875,7 +875,7 @@ static int e1000_setup_link(struct e1000_hw *hw)
if (hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
@@ -896,12 +896,12 @@ static int e1000_setup_link(struct e1000_hw *hw)
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) {
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ e1000_write_reg(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ e1000_write_reg(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ e1000_write_reg(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
}
- E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME);
+ e1000_write_reg(hw, E1000_FCTTV, E1000_FC_PAUSE_TIME);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
@@ -913,11 +913,11 @@ static int e1000_setup_link(struct e1000_hw *hw)
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
- E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
- E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH);
+ e1000_write_reg(hw, E1000_FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
+ e1000_write_reg(hw, E1000_FCRTH, E1000_FC_HIGH_THRESH);
} else {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
+ e1000_write_reg(hw, E1000_FCRTL, 0);
+ e1000_write_reg(hw, E1000_FCRTH, 0);
}
return ret_val;
@@ -946,7 +946,7 @@ static int e1000_setup_fiber_link(struct e1000_hw *hw)
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
@@ -1010,9 +1010,9 @@ static int e1000_setup_fiber_link(struct e1000_hw *hw)
*/
dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw);
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_TXCW, txcw);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
+ e1000_write_flush(hw);
mdelay(1);
@@ -1021,11 +1021,11 @@ static int e1000_setup_fiber_link(struct e1000_hw *hw)
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
*/
- if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ if ((e1000_read_reg(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1) == signal) {
dev_dbg(hw->dev, "Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
- status = E1000_READ_REG(hw, STATUS);
+ status = e1000_read_reg(hw, E1000_STATUS);
if (status & E1000_STATUS_LU)
break;
}
@@ -1062,7 +1062,7 @@ static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
DEBUGFUNC();
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
@@ -1070,11 +1070,11 @@ static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
| E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
@@ -1137,7 +1137,7 @@ static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
/* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the
* settings in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ phy_ctrl = e1000_read_reg(hw, E1000_PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if (ret_val)
@@ -1153,7 +1153,7 @@ static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ e1000_write_reg(hw, E1000_PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
@@ -1191,13 +1191,13 @@ static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ phy_ctrl = e1000_read_reg(hw, E1000_PHY_CTRL);
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ e1000_write_reg(hw, E1000_PHY_CTRL, phy_ctrl);
} else if (hw->mac_type == e1000_igb) {
- phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
+ phy_ctrl = e1000_read_reg(hw, E1000_I210_PHY_CTRL);
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
+ e1000_write_reg(hw, E1000_I210_PHY_CTRL, phy_ctrl);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
@@ -1238,10 +1238,10 @@ static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw)
mdelay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl = e1000_read_reg(hw, E1000_LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ e1000_write_reg(hw, E1000_LEDCTL, led_ctrl);
}
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
@@ -1326,7 +1326,7 @@ static bool e1000_check_mng_mode(struct e1000_hw *hw)
DEBUGFUNC();
- fwsm = E1000_READ_REG(hw, FWSM);
+ fwsm = e1000_read_reg(hw, E1000_FWSM);
if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) ==
@@ -1353,7 +1353,7 @@ static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
& E1000_KUMCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ e1000_write_reg(hw, E1000_KUMCTRLSTA, reg_val);
udelay(2);
return E1000_SUCCESS;
@@ -1376,11 +1376,11 @@ static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint1
/* Write register address */
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ e1000_write_reg(hw, E1000_KUMCTRLSTA, reg_val);
udelay(2);
/* Read the data returned */
- reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+ reg_val = e1000_read_reg(hw, E1000_KUMCTRLSTA);
*data = (uint16_t)reg_val;
return E1000_SUCCESS;
@@ -1462,9 +1462,9 @@ static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw)
if (ret_val)
return ret_val;
- reg_data = E1000_READ_REG(hw, CTRL_EXT);
+ reg_data = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+ e1000_write_reg(hw, E1000_CTRL_EXT, reg_data);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
if (ret_val)
@@ -1930,13 +1930,13 @@ static void e1000_config_collision_dist(struct e1000_hw *hw)
else
coll_dist = E1000_COLLISION_DISTANCE;
- tctl = E1000_READ_REG(hw, TCTL);
+ tctl = e1000_read_reg(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT;
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_TCTL, tctl);
+ e1000_write_flush(hw);
}
/******************************************************************************
@@ -1958,7 +1958,7 @@ static int e1000_config_mac_to_phy(struct e1000_hw *hw)
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_ILOS);
ctrl |= (E1000_CTRL_SPD_SEL);
@@ -1985,7 +1985,7 @@ static int e1000_config_mac_to_phy(struct e1000_hw *hw)
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
return 0;
}
@@ -2007,7 +2007,7 @@ static int e1000_force_mac_fc(struct e1000_hw *hw)
DEBUGFUNC();
/* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
@@ -2051,7 +2051,7 @@ static int e1000_force_mac_fc(struct e1000_hw *hw)
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
- E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
return 0;
}
@@ -2261,10 +2261,10 @@ static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t dup
return ret_val;
/* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
+ tipg = e1000_read_reg(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
- E1000_WRITE_REG(hw, TIPG, tipg);
+ e1000_write_reg(hw, E1000_TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
@@ -2296,10 +2296,10 @@ static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
+ tipg = e1000_read_reg(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, tipg);
+ e1000_write_reg(hw, E1000_TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
@@ -2328,7 +2328,7 @@ static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
DEBUGFUNC();
if (hw->mac_type >= e1000_82543) {
- status = E1000_READ_REG(hw, STATUS);
+ status = e1000_read_reg(hw, E1000_STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
dev_dbg(hw->dev, "1000 Mbs, ");
@@ -2411,8 +2411,8 @@ static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 2 microseconds.
*/
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+ e1000_write_flush(hw);
udelay(2);
}
@@ -2427,8 +2427,8 @@ static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 2 microseconds.
*/
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ e1000_write_flush(hw);
udelay(2);
}
@@ -2454,7 +2454,7 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
mask = 0x01;
mask <<= (count - 1);
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
@@ -2470,8 +2470,8 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
else
ctrl &= ~E1000_CTRL_MDIO;
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
+ e1000_write_flush(hw);
udelay(2);
@@ -2502,14 +2502,14 @@ static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
+ e1000_write_flush(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
@@ -2521,7 +2521,7 @@ static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
@@ -2552,12 +2552,12 @@ static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
- E1000_WRITE_REG(hw, MDIC, mdic);
+ e1000_write_reg(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
- mdic = E1000_READ_REG(hw, MDIC);
+ mdic = e1000_read_reg(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
@@ -2641,12 +2641,12 @@ static int e1000_phy_write(struct mii_bus *bus, int phy_addr,
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
- E1000_WRITE_REG(hw, MDIC, mdic);
+ e1000_write_reg(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
- mdic = E1000_READ_REG(hw, MDIC);
+ mdic = e1000_read_reg(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
@@ -2704,14 +2704,14 @@ static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw)
{
if (hw->mac_type == e1000_ich8lan) {
- if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY)
+ if (e1000_read_reg(hw, E1000_FWSM) & E1000_FWSM_RSPCIPHY)
return E1000_SUCCESS;
else
return E1000_BLK_PHY_RESET;
}
if (hw->mac_type > e1000_82547_rev_2) {
- if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
+ if (e1000_read_reg(hw, E1000_MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
return E1000_BLK_PHY_RESET;
else
return E1000_SUCCESS;
@@ -2752,10 +2752,10 @@ static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
case e1000_igb:
while (timeout) {
if (hw->mac_type == e1000_igb) {
- if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
+ if (e1000_read_reg(hw, E1000_I210_EEMNGCTL) & cfg_mask)
break;
} else {
- if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+ if (e1000_read_reg(hw, E1000_EEMNGCTL) & cfg_mask)
break;
}
mdelay(1);
@@ -2805,14 +2805,14 @@ static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
+ ctrl = e1000_read_reg(hw, E1000_CTRL);
+ e1000_write_reg(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ e1000_write_flush(hw);
udelay(100);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL, ctrl);
+ e1000_write_flush(hw);
if (hw->mac_type >= e1000_82571)
mdelay(10);
@@ -2820,24 +2820,24 @@ static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_write_flush(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_write_flush(hw);
}
udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl = e1000_read_reg(hw, E1000_LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ e1000_write_reg(hw, E1000_LEDCTL, led_ctrl);
}
/* Wait for FW to finish PHY configuration. */
@@ -3147,7 +3147,7 @@ static void e1000_set_media_type(struct e1000_hw *hw)
break;
}
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE)
+ if (e1000_read_reg(hw, E1000_STATUS) & E1000_STATUS_TBIMODE)
hw->media_type = e1000_media_type_fiber;
else
hw->media_type = e1000_media_type_copper;
@@ -3198,7 +3198,7 @@ static void fill_rx(struct e1000_hw *hw)
rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet);
- E1000_WRITE_REG(hw, RDT, hw->rx_tail);
+ e1000_write_reg(hw, E1000_RDT, hw->rx_tail);
}
/**
@@ -3214,14 +3214,14 @@ static void e1000_configure_tx(struct e1000_hw *hw)
unsigned long tipg, tarc;
uint32_t ipgr1, ipgr2;
- E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base);
- E1000_WRITE_REG(hw, TDBAH, 0);
+ e1000_write_reg(hw, E1000_TDBAL, (unsigned long)hw->tx_base);
+ e1000_write_reg(hw, E1000_TDBAH, 0);
- E1000_WRITE_REG(hw, TDLEN, 128);
+ e1000_write_reg(hw, E1000_TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(hw, TDH, 0);
- E1000_WRITE_REG(hw, TDT, 0);
+ e1000_write_reg(hw, E1000_TDH, 0);
+ e1000_write_reg(hw, E1000_TDT, 0);
hw->tx_tail = 0;
/* Set the default values for the Tx Inter Packet Gap timer */
@@ -3251,25 +3251,25 @@ static void e1000_configure_tx(struct e1000_hw *hw)
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
- E1000_WRITE_REG(hw, TIPG, tipg);
+ e1000_write_reg(hw, E1000_TIPG, tipg);
/* Program the Transmit Control Register */
- tctl = E1000_READ_REG(hw, TCTL);
+ tctl = e1000_read_reg(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
- tarc = E1000_READ_REG(hw, TARC0);
+ tarc = e1000_read_reg(hw, E1000_TARC0);
/* set the speed mode bit, we'll clear it if we're not at
* gigabit link later */
/* git bit can be set to 1*/
} else if (hw->mac_type == e1000_80003es2lan) {
- tarc = E1000_READ_REG(hw, TARC0);
+ tarc = e1000_read_reg(hw, E1000_TARC0);
tarc |= 1;
- E1000_WRITE_REG(hw, TARC0, tarc);
- tarc = E1000_READ_REG(hw, TARC1);
+ e1000_write_reg(hw, E1000_TARC0, tarc);
+ tarc = e1000_read_reg(hw, E1000_TARC1);
tarc |= 1;
- E1000_WRITE_REG(hw, TARC1, tarc);
+ e1000_write_reg(hw, E1000_TARC1, tarc);
}
@@ -3287,15 +3287,15 @@ static void e1000_configure_tx(struct e1000_hw *hw)
if (hw->mac_type == e1000_igb) {
uint32_t reg_txdctl;
- E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
+ e1000_write_reg(hw, E1000_TCTL_EXT, 0x42 << 10);
- reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl = e1000_read_reg(hw, E1000_TXDCTL);
reg_txdctl |= 1 << 25;
- E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+ e1000_write_reg(hw, E1000_TXDCTL, reg_txdctl);
mdelay(20);
}
- E1000_WRITE_REG(hw, TCTL, tctl);
+ e1000_write_reg(hw, E1000_TCTL, tctl);
}
/**
@@ -3306,7 +3306,7 @@ static void e1000_setup_rctl(struct e1000_hw *hw)
{
uint32_t rctl;
- rctl = E1000_READ_REG(hw, RCTL);
+ rctl = e1000_read_reg(hw, E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
@@ -3319,7 +3319,7 @@ static void e1000_setup_rctl(struct e1000_hw *hw)
rctl &= ~(E1000_RCTL_SZ_4096);
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
- E1000_WRITE_REG(hw, RCTL, rctl);
+ e1000_write_reg(hw, E1000_RCTL, rctl);
}
/**
@@ -3334,42 +3334,42 @@ static void e1000_configure_rx(struct e1000_hw *hw)
hw->rx_tail = 0;
/* make sure receives are disabled while setting up the descriptors */
- rctl = E1000_READ_REG(hw, RCTL);
- E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
+ rctl = e1000_read_reg(hw, E1000_RCTL);
+ e1000_write_reg(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
if (hw->mac_type >= e1000_82540) {
/* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
- E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
+ e1000_write_reg(hw, E1000_ITR, DEFAULT_ITR);
}
if (hw->mac_type >= e1000_82571) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
/* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_write_flush(hw);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
- E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base);
- E1000_WRITE_REG(hw, RDBAH, 0);
+ e1000_write_reg(hw, E1000_RDBAL, (unsigned long)hw->rx_base);
+ e1000_write_reg(hw, E1000_RDBAH, 0);
- E1000_WRITE_REG(hw, RDLEN, 128);
+ e1000_write_reg(hw, E1000_RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
- E1000_WRITE_REG(hw, RDH, 0);
- E1000_WRITE_REG(hw, RDT, 0);
+ e1000_write_reg(hw, E1000_RDH, 0);
+ e1000_write_reg(hw, E1000_RDT, 0);
/* Enable Receives */
if (hw->mac_type == e1000_igb) {
- uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
+ uint32_t reg_rxdctl = e1000_read_reg(hw, E1000_RXDCTL);
reg_rxdctl |= 1 << 25;
- E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
+ e1000_write_reg(hw, E1000_RXDCTL, reg_rxdctl);
mdelay(20);
}
- E1000_WRITE_REG(hw, RCTL, rctl);
+ e1000_write_reg(hw, E1000_RCTL, rctl);
fill_rx(hw);
}
@@ -3410,9 +3410,9 @@ static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE);
- E1000_WRITE_REG(hw, TDT, hw->tx_tail);
+ e1000_write_reg(hw, E1000_TDT, hw->tx_tail);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_flush(hw);
to = get_time_ns();
while (1) {
@@ -3432,16 +3432,16 @@ static void e1000_disable(struct eth_device *edev)
struct e1000_hw *hw = edev->priv;
/* Turn off the ethernet interface */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, 0);
+ e1000_write_reg(hw, E1000_RCTL, 0);
+ e1000_write_reg(hw, E1000_TCTL, 0);
/* Clear the transmit ring */
- E1000_WRITE_REG(hw, TDH, 0);
- E1000_WRITE_REG(hw, TDT, 0);
+ e1000_write_reg(hw, E1000_TDH, 0);
+ e1000_write_reg(hw, E1000_TDT, 0);
/* Clear the receive ring */
- E1000_WRITE_REG(hw, RDH, 0);
- E1000_WRITE_REG(hw, RDT, 0);
+ e1000_write_reg(hw, E1000_RDH, 0);
+ e1000_write_reg(hw, E1000_RDT, 0);
mdelay(10);
}
@@ -3456,15 +3456,15 @@ static int e1000_init(struct eth_device *edev)
DEBUGFUNC();
if (hw->mac_type >= e1000_82544)
- E1000_WRITE_REG(hw, WUC, 0);
+ e1000_write_reg(hw, E1000_WUC, 0);
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
- reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data = e1000_read_reg(hw, E1000_STATUS);
reg_data &= ~0x80000000;
- E1000_WRITE_REG(hw, STATUS, reg_data);
+ e1000_write_reg(hw, E1000_STATUS, reg_data);
}
/* Set the media type and TBI compatibility */
@@ -3478,7 +3478,7 @@ static int e1000_init(struct eth_device *edev)
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
+ e1000_write_reg(hw, E1000_VET, 0);
e1000_clear_vfta(hw);
}
@@ -3487,20 +3487,20 @@ static int e1000_init(struct eth_device *edev)
dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_RCTL, E1000_RCTL_RST);
+ e1000_write_flush(hw);
mdelay(5);
}
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ e1000_write_reg_array(hw, E1000_RA, (i << 1), 0);
+ e1000_write_reg_array(hw, E1000_RA, (i << 1) + 1, 0);
}
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
+ e1000_write_reg(hw, E1000_RCTL, 0);
+ e1000_write_flush(hw);
mdelay(1);
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
@@ -3511,10 +3511,10 @@ static int e1000_init(struct eth_device *edev)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ e1000_write_reg_array(hw, E1000_MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
- E1000_WRITE_FLUSH(hw);
+ e1000_write_flush(hw);
}
/* More time needed for PHY to initialize */
@@ -3571,7 +3571,7 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
dev_err(&pdev->dev, "EEPROM is invalid!\n");
return -EINVAL;
}
- if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
+ if ((e1000_read_reg(hw, E1000_I210_EECD) & E1000_EECD_FLUPD) &&
e1000_validate_eeprom_checksum(hw))
return -EINVAL;
diff --git a/drivers/net/e1000/regio.c b/drivers/net/e1000/regio.c
new file mode 100644
index 0000000..8c529f1
--- /dev/null
+++ b/drivers/net/e1000/regio.c
@@ -0,0 +1,29 @@
+#include <common.h>
+
+#include "e1000.h"
+
+void e1000_write_reg(struct e1000_hw *hw, uint32_t reg, uint32_t value)
+{
+ writel(value, hw->hw_addr + reg);
+}
+
+uint32_t e1000_read_reg(struct e1000_hw *hw, uint32_t reg)
+{
+ return readl(hw->hw_addr + reg);
+}
+
+void e1000_write_reg_array(struct e1000_hw *hw, uint32_t base,
+ uint32_t idx, uint32_t value)
+{
+ writel(value, hw->hw_addr + base + idx * sizeof(uint32_t));
+}
+
+uint32_t e1000_read_reg_array(struct e1000_hw *hw, uint32_t base, uint32_t idx)
+{
+ return readl(hw->hw_addr + base + idx * sizeof(uint32_t));
+}
+
+void e1000_write_flush(struct e1000_hw *hw)
+{
+ e1000_read_reg(hw, E1000_STATUS);
+}
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 04/21] e1000: Fix a bug in e1000_detect_gig_phy
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (2 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 03/21] e1000: Convert E1000_*_REG macros to functions Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 05/21] e1000: Remove unnecessary variable Andrey Smirnov
` (16 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
It seems there's stray exclamation mark character in
e1000_detect_gig_phy which renders the whole if statement useless
since it converts 'phy_type' into a boolean and comparing that to 0xFF
would always result in false (which GCC 5.1 is now able to detect and
warn about). This commit fixes that.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/main.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index f3c0ed8..978e525 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -3096,7 +3096,7 @@ static int32_t e1000_detect_gig_phy(struct e1000_hw *hw)
return -E1000_ERR_CONFIG;
}
- if (!phy_type == e1000_phy_undefined) {
+ if (phy_type == e1000_phy_undefined) {
dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id);
return -EINVAL;
}
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 05/21] e1000: Remove unnecessary variable
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (3 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 04/21] e1000: Fix a bug in e1000_detect_gig_phy Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 06/21] e1000: Do not read same register twice Andrey Smirnov
` (15 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
There doesn't seem to be any point for having 'nv_packet' variable and
it looks like a leftover from driving porting. Remove it and use
'txpacket' instead
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/main.c | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 978e525..6d92cde 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -3396,7 +3396,6 @@ static int e1000_poll(struct eth_device *edev)
static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
{
- void *nv_packet = (void *)txpacket;
struct e1000_hw *hw = edev->priv;
volatile struct e1000_tx_desc *txp;
uint64_t to;
@@ -3404,7 +3403,7 @@ static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
txp = hw->tx_base + hw->tx_tail;
hw->tx_tail = (hw->tx_tail + 1) % 8;
- txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
+ txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, txpacket));
txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
txp->upper.data = 0;
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 06/21] e1000: Do not read same register twice
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (4 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 05/21] e1000: Remove unnecessary variable Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 07/21] e1000: Remove unneeded i210 specific register code Andrey Smirnov
` (14 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
EEPROM_INIT_CONTROL2_REG is already read once before entering this
switch statement, so there's not much use in reading its value for the
second time.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/main.c | 6 ------
1 file changed, 6 deletions(-)
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 6d92cde..11a0a2f 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -839,12 +839,6 @@ static int e1000_setup_link(struct e1000_hw *hw)
hw->fc = e1000_fc_full;
break;
default:
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
- if (ret_val) {
- dev_dbg(hw->dev, "EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 07/21] e1000: Remove unneeded i210 specific register code
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (5 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 06/21] e1000: Do not read same register twice Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 08/21] e1000: Consolidate register offset fixups Andrey Smirnov
` (13 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Despite having EEC(EECD) and EERD at "non-standard" offsets i210
aliases those registers to be accesible via regular addresses so none
of the code removed by this commit is really necessary.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 2 --
drivers/net/e1000/eeprom.c | 25 +++++--------------------
drivers/net/e1000/main.c | 5 +++--
3 files changed, 8 insertions(+), 24 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 7c5c98b..d75c707 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -404,9 +404,7 @@ struct e1000_tx_desc {
#define E1000_CTRL 0x00000 /* Device Control - RW */
#define E1000_STATUS 0x00008 /* Device Status - RO */
#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_I210_EECD 0x12010 /* EEPROM/Flash Control - RW */
#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_I210_EERD 0x12014 /* EEPROM Read - RW */
#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
#define E1000_MDIC 0x00020 /* MDI Control - RW */
#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index c16f69a..497fb7b 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -274,10 +274,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
int32_t ret_val = E1000_SUCCESS;
uint16_t eeprom_size;
- if (hw->mac_type == e1000_igb)
- eecd = e1000_read_reg(hw, E1000_I210_EECD);
- else
- eecd = e1000_read_reg(hw, E1000_EECD);
+ eecd = e1000_read_reg(hw, E1000_EECD);
DEBUGFUNC();
@@ -455,10 +452,7 @@ static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
for (i = 0; i < attempts; i++) {
if (eerd == E1000_EEPROM_POLL_READ) {
- if (hw->mac_type == e1000_igb)
- reg = e1000_read_reg(hw, E1000_I210_EERD);
- else
- reg = e1000_read_reg(hw, E1000_EERD);
+ reg = e1000_read_reg(hw, E1000_EERD);
} else {
if (hw->mac_type == e1000_igb)
reg = e1000_read_reg(hw, E1000_I210_EEWR);
@@ -496,24 +490,15 @@ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
E1000_EEPROM_RW_REG_START;
- if (hw->mac_type == e1000_igb)
- e1000_write_reg(hw, E1000_I210_EERD, eerd);
- else
- e1000_write_reg(hw, E1000_EERD, eerd);
+ e1000_write_reg(hw, E1000_EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
if (error)
break;
- if (hw->mac_type == e1000_igb) {
- data[i] = (e1000_read_reg(hw, E1000_I210_EERD) >>
- E1000_EEPROM_RW_REG_DATA);
- } else {
- data[i] = (e1000_read_reg(hw, E1000_EERD) >>
- E1000_EEPROM_RW_REG_DATA);
- }
-
+ data[i] = (e1000_read_reg(hw, E1000_EERD) >>
+ E1000_EEPROM_RW_REG_DATA);
}
return error;
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 11a0a2f..f1055ea 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -549,7 +549,7 @@ static void e1000_reset_hw(struct e1000_hw *hw)
reg = e1000_read_reg(hw, E1000_STATUS);
if (reg & E1000_STATUS_PF_RST_DONE)
dev_dbg(hw->dev, "PF OK\n");
- reg = e1000_read_reg(hw, E1000_I210_EECD);
+ reg = e1000_read_reg(hw, E1000_EECD);
if (reg & E1000_EECD_AUTO_RD)
dev_dbg(hw->dev, "EEC OK\n");
} else if (hw->mac_type < e1000_82540) {
@@ -3564,7 +3564,8 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
dev_err(&pdev->dev, "EEPROM is invalid!\n");
return -EINVAL;
}
- if ((e1000_read_reg(hw, E1000_I210_EECD) & E1000_EECD_FLUPD) &&
+
+ if ((e1000_read_reg(hw, E1000_EECD) & E1000_EECD_FLUPD) &&
e1000_validate_eeprom_checksum(hw))
return -EINVAL;
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 08/21] e1000: Consolidate register offset fixups
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (6 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 07/21] e1000: Remove unneeded i210 specific register code Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 20:42 ` Trent Piepho
2016-05-31 17:09 ` [PATCH 09/21] e1000: Remove 'use_eewr' parameter Andrey Smirnov
` (12 subsequent siblings)
20 siblings, 1 reply; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Consolidate all code taking care on CSR offset differences for i210
chips into a single place in the driver and integrate that
funcionality into E1000_{READ,WRITE}_REG macros. This way we can get
rid of all those
if (hw->mac_type == e1000_igb) {
....
} else {
....
}
snippets sprinkled all across the driver code.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 10 +++-------
drivers/net/e1000/main.c | 17 +++++------------
drivers/net/e1000/regio.c | 26 ++++++++++++++++++++++++++
3 files changed, 34 insertions(+), 19 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 497fb7b..c2dfad5 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -451,14 +451,10 @@ static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
int32_t done = E1000_ERR_EEPROM;
for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ) {
+ if (eerd == E1000_EEPROM_POLL_READ)
reg = e1000_read_reg(hw, E1000_EERD);
- } else {
- if (hw->mac_type == e1000_igb)
- reg = e1000_read_reg(hw, E1000_I210_EEWR);
- else
- reg = e1000_read_reg(hw, E1000_EEWR);
- }
+ else
+ reg = e1000_read_reg(hw, E1000_EEWR);
if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index f1055ea..4a527a3 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -1184,14 +1184,11 @@ static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
if (hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
- if (hw->mac_type == e1000_ich8lan) {
+ if (hw->mac_type == e1000_ich8lan ||
+ hw->mac_type == e1000_igb) {
phy_ctrl = e1000_read_reg(hw, E1000_PHY_CTRL);
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
e1000_write_reg(hw, E1000_PHY_CTRL, phy_ctrl);
- } else if (hw->mac_type == e1000_igb) {
- phy_ctrl = e1000_read_reg(hw, E1000_I210_PHY_CTRL);
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- e1000_write_reg(hw, E1000_I210_PHY_CTRL, phy_ctrl);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
@@ -2745,13 +2742,9 @@ static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
case e1000_82572:
case e1000_igb:
while (timeout) {
- if (hw->mac_type == e1000_igb) {
- if (e1000_read_reg(hw, E1000_I210_EEMNGCTL) & cfg_mask)
- break;
- } else {
- if (e1000_read_reg(hw, E1000_EEMNGCTL) & cfg_mask)
- break;
- }
+ if (e1000_read_reg(hw, E1000_EEMNGCTL) & cfg_mask)
+ break;
+
mdelay(1);
timeout--;
}
diff --git a/drivers/net/e1000/regio.c b/drivers/net/e1000/regio.c
index 8c529f1..33012be 100644
--- a/drivers/net/e1000/regio.c
+++ b/drivers/net/e1000/regio.c
@@ -2,13 +2,39 @@
#include "e1000.h"
+struct e1000_fixup_table {
+ uint32_t orig, fixed;
+};
+
+static inline uint32_t e1000_true_offset(struct e1000_hw *hw, uint32_t reg)
+{
+ if (hw->mac_type == e1000_igb) {
+ unsigned int i;
+
+ const struct e1000_fixup_table fixup_table[] = {
+ { E1000_EEWR, E1000_I210_EEWR },
+ { E1000_PHY_CTRL, E1000_I210_PHY_CTRL },
+ { E1000_EEMNGCTL, E1000_I210_EEMNGCTL },
+ };
+
+ for (i = 0; i < ARRAY_SIZE(fixup_table); i++) {
+ if (fixup_table[i].orig == reg)
+ return fixup_table[i].fixed;
+ }
+ }
+
+ return reg;
+}
+
void e1000_write_reg(struct e1000_hw *hw, uint32_t reg, uint32_t value)
{
+ reg = e1000_true_offset(hw, reg);
writel(value, hw->hw_addr + reg);
}
uint32_t e1000_read_reg(struct e1000_hw *hw, uint32_t reg)
{
+ reg = e1000_true_offset(hw, reg);
return readl(hw->hw_addr + reg);
}
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 09/21] e1000: Remove 'use_eewr' parameter
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (7 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 08/21] e1000: Consolidate register offset fixups Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 10/21] e1000: Remove 'page_size' Andrey Smirnov
` (11 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Remove 'use_eewr' from 'struct e1000_eeprom_info' since it is not used
anywhere in the code.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 1 -
drivers/net/e1000/eeprom.c | 7 -------
2 files changed, 8 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index d75c707..76872f0 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -690,7 +690,6 @@ struct e1000_eeprom_info {
uint16_t delay_usec;
uint16_t page_size;
bool use_eerd;
- bool use_eewr;
};
#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index c2dfad5..b6414b2 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -289,7 +289,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
eeprom->use_eerd = false;
- eeprom->use_eewr = false;
break;
case e1000_82540:
case e1000_82545:
@@ -307,7 +306,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->address_bits = 6;
}
eeprom->use_eerd = false;
- eeprom->use_eewr = false;
break;
case e1000_82541:
case e1000_82541_rev_2:
@@ -337,7 +335,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
}
}
eeprom->use_eerd = false;
- eeprom->use_eewr = false;
break;
case e1000_82571:
case e1000_82572:
@@ -352,7 +349,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->address_bits = 8;
}
eeprom->use_eerd = false;
- eeprom->use_eewr = false;
break;
case e1000_82573:
case e1000_82574:
@@ -368,7 +364,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
}
if (e1000_is_onboard_nvm_eeprom(hw) == false) {
eeprom->use_eerd = true;
- eeprom->use_eewr = true;
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
@@ -391,7 +386,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->address_bits = 8;
}
eeprom->use_eerd = true;
- eeprom->use_eewr = false;
break;
case e1000_igb:
/* i210 has 4k of iNVM mapped as EEPROM */
@@ -401,7 +395,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->page_size = 32;
eeprom->address_bits = 16;
eeprom->use_eerd = true;
- eeprom->use_eewr = false;
break;
default:
break;
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 10/21] e1000: Remove 'page_size'
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (8 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 09/21] e1000: Remove 'use_eewr' parameter Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 11/21] e1000: Simplify EEPROM init for e1000_80003es2lan Andrey Smirnov
` (10 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Remove 'page_size' from 'struct e1000_eeprom_info' since it is not
used anywhere in the code.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 1 -
drivers/net/e1000/eeprom.c | 32 +++++++++++---------------------
2 files changed, 11 insertions(+), 22 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 76872f0..bb5f697 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -688,7 +688,6 @@ struct e1000_eeprom_info {
uint16_t opcode_bits;
uint16_t address_bits;
uint16_t delay_usec;
- uint16_t page_size;
bool use_eerd;
};
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index b6414b2..e4ef5f9 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -315,13 +315,10 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
+ if (eecd & E1000_EECD_ADDR_BITS)
eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
+ else
eeprom->address_bits = 8;
- }
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
@@ -341,13 +338,11 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
+ if (eecd & E1000_EECD_ADDR_BITS)
eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
+ else
eeprom->address_bits = 8;
- }
+
eeprom->use_eerd = false;
break;
case e1000_82573:
@@ -355,13 +350,11 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
+ if (eecd & E1000_EECD_ADDR_BITS)
eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
+ else
eeprom->address_bits = 8;
- }
+
if (e1000_is_onboard_nvm_eeprom(hw) == false) {
eeprom->use_eerd = true;
@@ -378,13 +371,11 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
+ if (eecd & E1000_EECD_ADDR_BITS)
eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
+ else
eeprom->address_bits = 8;
- }
+
eeprom->use_eerd = true;
break;
case e1000_igb:
@@ -392,7 +383,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_invm;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
- eeprom->page_size = 32;
eeprom->address_bits = 16;
eeprom->use_eerd = true;
break;
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 11/21] e1000: Simplify EEPROM init for e1000_80003es2lan
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (9 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 10/21] e1000: Remove 'page_size' Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 12/21] e1000: Simplify EEPROM init for e1000_igb Andrey Smirnov
` (9 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
That chip specifies read access uising EERD via use_eerd, which means
that none of the more "advanced" EEPROM parameters will be used for
reads, so remove them.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 7 -------
1 file changed, 7 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index e4ef5f9..63e84c1 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -369,13 +369,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
break;
case e1000_80003es2lan:
eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS)
- eeprom->address_bits = 16;
- else
- eeprom->address_bits = 8;
-
eeprom->use_eerd = true;
break;
case e1000_igb:
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 12/21] e1000: Simplify EEPROM init for e1000_igb
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (10 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 11/21] e1000: Simplify EEPROM init for e1000_80003es2lan Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 13/21] e1000: Consolidate SPI EEPROM init code Andrey Smirnov
` (8 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
That chip specifies read access uising EERD via use_eerd, which means
that none of the more "advanced" EEPROM parameters will be used for
reads, so remove them.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 3 ---
1 file changed, 3 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 63e84c1..55a8f96 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -374,9 +374,6 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
case e1000_igb:
/* i210 has 4k of iNVM mapped as EEPROM */
eeprom->type = e1000_eeprom_invm;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- eeprom->address_bits = 16;
eeprom->use_eerd = true;
break;
default:
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 13/21] e1000: Consolidate SPI EEPROM init code
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (11 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 12/21] e1000: Simplify EEPROM init for e1000_igb Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 14/21] e1000: Consolidate Microwire " Andrey Smirnov
` (7 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
All of the chips that bitbang SPI to access EEPROM appear to be
configured in the same way, so move common code into a separate
function and make use of it.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 46 +++++++++++++++++++++-------------------------
1 file changed, 21 insertions(+), 25 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 55a8f96..89514eb 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -260,6 +260,22 @@ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
return E1000_SUCCESS;
}
+static void e1000_eeprom_uses_spi(struct e1000_eeprom_info *eeprom,
+ uint32_t eecd)
+{
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->address_bits = 8;
+ }
+
+ eeprom->use_eerd = false;
+}
+
+
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured. Additionally, if this is ICH8, the flash controller GbE
@@ -312,13 +328,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS)
- eeprom->address_bits = 16;
- else
- eeprom->address_bits = 8;
+ e1000_eeprom_uses_spi(eeprom, eecd);
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
@@ -335,27 +345,13 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
break;
case e1000_82571:
case e1000_82572:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS)
- eeprom->address_bits = 16;
- else
- eeprom->address_bits = 8;
-
- eeprom->use_eerd = false;
+ e1000_eeprom_uses_spi(eeprom, eecd);
break;
case e1000_82573:
case e1000_82574:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS)
- eeprom->address_bits = 16;
- else
- eeprom->address_bits = 8;
-
- if (e1000_is_onboard_nvm_eeprom(hw) == false) {
+ if (e1000_is_onboard_nvm_eeprom(hw)) {
+ e1000_eeprom_uses_spi(eeprom, eecd);
+ } else {
eeprom->use_eerd = true;
eeprom->type = e1000_eeprom_flash;
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 14/21] e1000: Consolidate Microwire EEPROM init code
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (12 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 13/21] e1000: Consolidate SPI EEPROM init code Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 15/21] e1000: Fix a bug in e1000_probe() Andrey Smirnov
` (6 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
All of the chips that bitbang Microwire to access EEPROM appear to be
configured in the same way, so move common code into a separate
function and make use of it.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 52 +++++++++++++++++++---------------------------
1 file changed, 21 insertions(+), 31 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 89514eb..2e5d46e 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -275,6 +275,22 @@ static void e1000_eeprom_uses_spi(struct e1000_eeprom_info *eeprom,
eeprom->use_eerd = false;
}
+static void e1000_eeprom_uses_microwire(struct e1000_eeprom_info *eeprom,
+ uint32_t eecd)
+{
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_SIZE) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ eeprom->use_eerd = false;
+}
+
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
@@ -299,49 +315,23 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = false;
+ e1000_eeprom_uses_microwire(eeprom, 0);
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = false;
+ e1000_eeprom_uses_microwire(eeprom, eecd);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
+ if (eecd & E1000_EECD_TYPE)
e1000_eeprom_uses_spi(eeprom, eecd);
- } else {
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = false;
+ else
+ e1000_eeprom_uses_microwire(eeprom, eecd);
break;
case e1000_82571:
case e1000_82572:
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 15/21] e1000: Fix a bug in e1000_probe()
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (13 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 14/21] e1000: Consolidate Microwire " Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 16/21] e1000: Remove unnecessary intialization Andrey Smirnov
` (5 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
There are several reasons why that code in e1000_probe had to be
changed:
- It reads from chip variant specific register (present only on
i210) in a chip variant agnostic codepath
- It makes no sense to check for FLUPD bit to make a decision weither
to validate EEPROM or not since its function per datasheet is:
" ... Flash Update.
Writing 1b to this bit causes the content of the internal 4 KB
shadow RAM to be written into one of the first two 4 KB sectors
of the Flash device (Sector 0 or Sector 1). The bit is
self-cleared immediately... "
and it is only through sheer serendipity the defined value for
bitmask for FLUPD is equivalent to bitmask for FLASH_DETECTED bit
which is the bit we actually care about and need to test against
(FLUPD for i210 has a different bitmask)
Fix those problems by replacing the i210 specific check inside of
e1000_validate_eeprom_checksum() with a chip agnostic one and using
correct bitmask.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 1 +
drivers/net/e1000/eeprom.c | 18 ++++++++++++++++--
drivers/net/e1000/main.c | 3 +--
3 files changed, 18 insertions(+), 4 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index bb5f697..2eb20f1 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -789,6 +789,7 @@ struct e1000_eeprom_info {
#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_I210_FLASH_DETECTED (1 << 19) /* FLASH detected */
#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 2e5d46e..a7059f6 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -358,8 +358,13 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->use_eerd = true;
break;
case e1000_igb:
- /* i210 has 4k of iNVM mapped as EEPROM */
- eeprom->type = e1000_eeprom_invm;
+ if (eecd & E1000_EECD_I210_FLASH_DETECTED) {
+ eeprom->type = e1000_eeprom_flash;
+ eeprom->word_size = 2048;
+ } else {
+ eeprom->type = e1000_eeprom_invm;
+ }
+
eeprom->use_eerd = true;
break;
default:
@@ -660,6 +665,15 @@ int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
DEBUGFUNC();
+ /*
+ Only the following three 'types' of EEPROM can be expected
+ to have correct EEPROM checksum
+ */
+ if (hw->eeprom.type != e1000_eeprom_spi &&
+ hw->eeprom.type != e1000_eeprom_microwire &&
+ hw->eeprom.type != e1000_eeprom_flash)
+ return 0;
+
/* Read the EEPROM */
if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
dev_err(&hw->edev.dev, "Unable to read EEPROM!\n");
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 4a527a3..7ee78c3 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -3558,8 +3558,7 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
return -EINVAL;
}
- if ((e1000_read_reg(hw, E1000_EECD) & E1000_EECD_FLUPD) &&
- e1000_validate_eeprom_checksum(hw))
+ if (e1000_validate_eeprom_checksum(hw))
return -EINVAL;
e1000_get_ethaddr(edev, edev->ethaddr);
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 16/21] e1000: Remove unnecessary intialization
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (14 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 15/21] e1000: Fix a bug in e1000_probe() Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 17/21] e1000: Refactor Flash/EEPROM reading code Andrey Smirnov
` (4 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
We always call e1000_init_eeprom_params() as a part of probing, so
there's no need check if it needs to be called in e1000_read_eeprom().
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 4 ----
1 file changed, 4 deletions(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index a7059f6..0896fd6 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -563,10 +563,6 @@ int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
DEBUGFUNC();
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 17/21] e1000: Refactor Flash/EEPROM reading code
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (15 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 16/21] e1000: Remove unnecessary intialization Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 18/21] e1000: Properly release SW_FW_SYNC semaphore bits Andrey Smirnov
` (3 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Refactor Flash/EEPROM reading code to use vtable with pointers to
small, specialized functions based on the flash class instead of big
monolithic funtions whose behaviour is driven by a number of flags and
variables.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 9 +-
drivers/net/e1000/eeprom.c | 312 +++++++++++++++++++++++++++------------------
2 files changed, 195 insertions(+), 126 deletions(-)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 2eb20f1..6b7cf82 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -682,13 +682,20 @@ struct e1000_tx_desc {
#define E1000_82542_FFMT E1000_FFMT
#define E1000_82542_FFVT E1000_FFVT
+struct e1000_hw;
+
struct e1000_eeprom_info {
e1000_eeprom_type type;
uint16_t word_size;
uint16_t opcode_bits;
uint16_t address_bits;
uint16_t delay_usec;
- bool use_eerd;
+
+ int32_t (*acquire) (struct e1000_hw *hw);
+ void (*release) (struct e1000_hw *hw);
+
+ int32_t (*read) (struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
};
#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 0896fd6..b051a9b 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -4,6 +4,18 @@
#include "e1000.h"
+static void e1000_release_eeprom_spi(struct e1000_hw *hw);
+static int32_t e1000_read_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+static void e1000_release_eeprom_microwire(struct e1000_hw *hw);
+static int32_t e1000_read_eeprom_microwire(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+
+static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+
/******************************************************************************
@@ -201,28 +213,22 @@ static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
return true;
}
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
+static int32_t
+e1000_acquire_eeprom_spi_microwire_prologue(struct e1000_hw *hw)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i = 0;
-
- DEBUGFUNC();
+ uint32_t eecd;
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
return -E1000_ERR_SWFW_SYNC;
+
eecd = e1000_read_reg(hw, E1000_EECD);
/* Request EEPROM Access */
- if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 &&
- hw->mac_type != e1000_82574) {
+ if (hw->mac_type > e1000_82544 &&
+ hw->mac_type != e1000_82573 &&
+ hw->mac_type != e1000_82574) {
+ int i = 0;
+
eecd |= E1000_EECD_REQ;
e1000_write_reg(hw, E1000_EECD, eecd);
eecd = e1000_read_reg(hw, E1000_EECD);
@@ -240,26 +246,57 @@ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
}
}
- /* Setup EEPROM for Read/Write */
+ return E1000_SUCCESS;
+}
+
+static int32_t e1000_acquire_eeprom_spi(struct e1000_hw *hw)
+{
+ int32_t ret;
+ uint32_t eecd;
- if (eeprom->type == e1000_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- e1000_write_reg(hw, E1000_EECD, eecd);
+ ret = e1000_acquire_eeprom_spi_microwire_prologue(hw);
+ if (ret != E1000_SUCCESS)
+ return ret;
- /* Set CS */
- eecd |= E1000_EECD_CS;
- e1000_write_reg(hw, E1000_EECD, eecd);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- e1000_write_reg(hw, E1000_EECD, eecd);
- udelay(1);
- }
+ eecd = e1000_read_reg(hw, E1000_EECD);
+
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ udelay(1);
return E1000_SUCCESS;
}
+static int32_t e1000_acquire_eeprom_microwire(struct e1000_hw *hw)
+{
+ int ret;
+ uint32_t eecd;
+
+ ret = e1000_acquire_eeprom_spi_microwire_prologue(hw);
+ if (ret != E1000_SUCCESS)
+ return ret;
+
+ eecd = e1000_read_reg(hw, E1000_EECD);
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ e1000_write_reg(hw, E1000_EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ e1000_write_reg(hw, E1000_EECD, eecd);
+
+ return E1000_SUCCESS;
+}
+
+static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+ if (hw->eeprom.acquire)
+ return hw->eeprom.acquire(hw);
+ else
+ return E1000_SUCCESS;
+}
+
static void e1000_eeprom_uses_spi(struct e1000_eeprom_info *eeprom,
uint32_t eecd)
{
@@ -272,7 +309,9 @@ static void e1000_eeprom_uses_spi(struct e1000_eeprom_info *eeprom,
eeprom->address_bits = 8;
}
- eeprom->use_eerd = false;
+ eeprom->acquire = e1000_acquire_eeprom_spi;
+ eeprom->release = e1000_release_eeprom_spi;
+ eeprom->read = e1000_read_eeprom_spi;
}
static void e1000_eeprom_uses_microwire(struct e1000_eeprom_info *eeprom,
@@ -288,7 +327,10 @@ static void e1000_eeprom_uses_microwire(struct e1000_eeprom_info *eeprom,
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
- eeprom->use_eerd = false;
+
+ eeprom->acquire = e1000_acquire_eeprom_microwire;
+ eeprom->release = e1000_release_eeprom_microwire;
+ eeprom->read = e1000_read_eeprom_microwire;
}
@@ -342,8 +384,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
if (e1000_is_onboard_nvm_eeprom(hw)) {
e1000_eeprom_uses_spi(eeprom, eecd);
} else {
- eeprom->use_eerd = true;
-
+ eeprom->read = e1000_read_eeprom_eerd;
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
@@ -355,7 +396,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
break;
case e1000_80003es2lan:
eeprom->type = e1000_eeprom_spi;
- eeprom->use_eerd = true;
+ eeprom->read = e1000_read_eeprom_eerd;
break;
case e1000_igb:
if (eecd & E1000_EECD_I210_FLASH_DETECTED) {
@@ -365,7 +406,7 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->type = e1000_eeprom_invm;
}
- eeprom->use_eerd = true;
+ eeprom->read = e1000_read_eeprom_eerd;
break;
default:
break;
@@ -464,41 +505,73 @@ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
return error;
}
-static void e1000_release_eeprom(struct e1000_hw *hw)
+static int32_t e1000_read_eeprom_spi(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
{
- uint32_t eecd;
+ unsigned int i;
+ uint16_t word_in;
+ uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
- DEBUGFUNC();
+ if (e1000_spi_eeprom_ready(hw)) {
+ e1000_release_eeprom(hw);
+ return -E1000_ERR_EEPROM;
+ }
- eecd = e1000_read_reg(hw, E1000_EECD);
+ e1000_standby_eeprom(hw);
- if (hw->eeprom.type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
+ /* Some SPI eeproms use the 8th address bit embedded in
+ * the opcode */
+ if ((hw->eeprom.address_bits == 8) && (offset >= 128))
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
- e1000_write_reg(hw, E1000_EECD, eecd);
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, read_opcode, hw->eeprom.opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset * 2),
+ hw->eeprom.address_bits);
- udelay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
- /* cleanup eeprom */
+ /* Read the data. The address of the eeprom internally
+ * increments with each byte (spi) being read, saving on the
+ * overhead of eeprom setup and tear-down. The address
+ * counter will roll over if reading beyond the size of
+ * the eeprom, thus allowing the entire memory to be read
+ * starting from any offset. */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_ee_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ return E1000_SUCCESS;
+}
- e1000_write_reg(hw, E1000_EECD, eecd);
+static int32_t e1000_read_eeprom_microwire(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ int i;
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw,
+ EEPROM_READ_OPCODE_MICROWIRE,
+ hw->eeprom.opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+ hw->eeprom.address_bits);
+
+ /* Read the data. For microwire, each word requires
+ * the overhead of eeprom setup and tear-down. */
+ data[i] = e1000_shift_in_ee_bits(hw, 16);
+ e1000_standby_eeprom(hw);
+ }
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- e1000_write_reg(hw, E1000_EECD, eecd);
- e1000_write_flush(hw);
- udelay(hw->eeprom.delay_usec);
+ return E1000_SUCCESS;
+}
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- e1000_write_reg(hw, E1000_EECD, eecd);
- e1000_write_flush(hw);
- udelay(hw->eeprom.delay_usec);
- }
+static void
+e1000_release_eeprom_spi_microwire_epilogue(struct e1000_hw *hw)
+{
+ uint32_t eecd = e1000_read_reg(hw, E1000_EECD);
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
@@ -506,6 +579,53 @@ static void e1000_release_eeprom(struct e1000_hw *hw)
e1000_write_reg(hw, E1000_EECD, eecd);
}
}
+
+static void e1000_release_eeprom_microwire(struct e1000_hw *hw)
+{
+ uint32_t eecd = e1000_read_reg(hw, E1000_EECD);
+
+ /* cleanup eeprom */
+
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ e1000_write_reg(hw, E1000_EECD, eecd);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
+ udelay(hw->eeprom.delay_usec);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ e1000_write_flush(hw);
+ udelay(hw->eeprom.delay_usec);
+
+
+ e1000_release_eeprom_spi_microwire_epilogue(hw);
+}
+
+static void e1000_release_eeprom_spi(struct e1000_hw *hw)
+{
+ uint32_t eecd = e1000_read_reg(hw, E1000_EECD);
+
+ eecd |= E1000_EECD_CS; /* Pull CS high */
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+ e1000_write_reg(hw, E1000_EECD, eecd);
+ udelay(hw->eeprom.delay_usec);
+
+ e1000_release_eeprom_spi_microwire_epilogue(hw);
+}
+
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+ if (hw->eeprom.release)
+ hw->eeprom.release(hw);
+}
+
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
@@ -559,7 +679,7 @@ int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
+ int32_t ret;
DEBUGFUNC();
@@ -574,75 +694,17 @@ int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
return -E1000_ERR_EEPROM;
}
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- if (e1000_is_onboard_nvm_eeprom(hw) == true &&
- hw->eeprom.use_eerd == false) {
-
- /* Prepare the EEPROM for bit-bang reading */
+ if (eeprom->read) {
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
- }
- /* Eerd register EEPROM access requires no eeprom aquire/release */
- if (eeprom->use_eerd == true)
- return e1000_read_eeprom_eerd(hw, offset, words, data);
+ ret = eeprom->read(hw, offset, words, data);
+ e1000_release_eeprom(hw);
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should relase it */
- if (eeprom->type == e1000_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (e1000_spi_eeprom_ready(hw)) {
- e1000_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- e1000_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in
- * the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
- eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally
- * increments with each byte (spi) being read, saving on the
- * overhead of eeprom setup and tear-down. The address
- * counter will roll over if reading beyond the size of
- * the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == e1000_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw,
- EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires
- * the overhead of eeprom setup and tear-down. */
- data[i] = e1000_shift_in_ee_bits(hw, 16);
- e1000_standby_eeprom(hw);
- }
+ return ret;
+ } else {
+ return -ENOTSUPP;
}
-
- /* End this read operation */
- e1000_release_eeprom(hw);
-
- return E1000_SUCCESS;
}
/******************************************************************************
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 18/21] e1000: Properly release SW_FW_SYNC semaphore bits
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (16 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 17/21] e1000: Refactor Flash/EEPROM reading code Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 19/21] e1000: Add EEPROM access locking for i210 Andrey Smirnov
` (2 subsequent siblings)
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
As described in the datasheet Software/Firmware synchronisation bits
are expected to be released by the software after it is done using
it. Add a porper subroutine to do that instead of relying on the
Firmware clearing those bits due to timeout.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 1 +
drivers/net/e1000/main.c | 30 ++++++++++++++++++++++++++++++
2 files changed, 31 insertions(+)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 6b7cf82..b47d538 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -2137,6 +2137,7 @@ int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t *data);
int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+int32_t e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c
index 7ee78c3..df9ae73 100644
--- a/drivers/net/e1000/main.c
+++ b/drivers/net/e1000/main.c
@@ -273,6 +273,21 @@ int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
return E1000_SUCCESS;
}
+int32_t e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
+{
+ uint32_t swfw_sync;
+
+ if (e1000_get_hw_eeprom_semaphore(hw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ swfw_sync = e1000_read_reg(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ e1000_write_reg(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_eeprom_semaphore(hw);
+ return E1000_SUCCESS;
+}
+
static bool e1000_is_second_port(struct e1000_hw *hw)
{
switch (hw->mac_type) {
@@ -1347,6 +1362,11 @@ static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint
e1000_write_reg(hw, E1000_KUMCTRLSTA, reg_val);
udelay(2);
+ if (e1000_swfw_sync_release(hw, swfw) < 0)
+ dev_warn(hw->dev,
+ "Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
+ swfw);
+
return E1000_SUCCESS;
}
@@ -1374,6 +1394,11 @@ static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint1
reg_val = e1000_read_reg(hw, E1000_KUMCTRLSTA);
*data = (uint16_t)reg_val;
+ if (e1000_swfw_sync_release(hw, swfw) < 0)
+ dev_warn(hw->dev,
+ "Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
+ swfw);
+
return E1000_SUCCESS;
}
@@ -2803,6 +2828,11 @@ static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
if (hw->mac_type >= e1000_82571)
mdelay(10);
+
+ if (e1000_swfw_sync_release(hw, swfw) < 0)
+ dev_warn(hw->dev,
+ "Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
+ swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 19/21] e1000: Add EEPROM access locking for i210
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (17 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 18/21] e1000: Properly release SW_FW_SYNC semaphore bits Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 20/21] e1000: Add a "poll register" function Andrey Smirnov
2016-05-31 17:09 ` [PATCH 21/21] e1000: Expose i210's iNVM as a cdev Andrey Smirnov
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
As per datasheet (section 4.6 p. 147) accessing EEPROM on i210
requires software to hold a corresponding lock bit in SW_FW_SYNC
register.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/eeprom.c | 19 ++++++++++++++++++-
1 file changed, 18 insertions(+), 1 deletion(-)
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index b051a9b..9032c12 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -15,7 +15,8 @@ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
-
+static int32_t e1000_acquire_eeprom_flash(struct e1000_hw *hw);
+static void e1000_release_eeprom_flash(struct e1000_hw *hw);
/******************************************************************************
@@ -289,6 +290,11 @@ static int32_t e1000_acquire_eeprom_microwire(struct e1000_hw *hw)
return E1000_SUCCESS;
}
+static int32_t e1000_acquire_eeprom_flash(struct e1000_hw *hw)
+{
+ return e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM);
+}
+
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
if (hw->eeprom.acquire)
@@ -402,6 +408,9 @@ int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
if (eecd & E1000_EECD_I210_FLASH_DETECTED) {
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
+
+ eeprom->acquire = e1000_acquire_eeprom_flash;
+ eeprom->release = e1000_release_eeprom_flash;
} else {
eeprom->type = e1000_eeprom_invm;
}
@@ -620,6 +629,14 @@ static void e1000_release_eeprom_spi(struct e1000_hw *hw)
e1000_release_eeprom_spi_microwire_epilogue(hw);
}
+static void e1000_release_eeprom_flash(struct e1000_hw *hw)
+{
+ if (e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM) < 0)
+ dev_warn(hw->dev,
+ "Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
+ E1000_SWFW_EEP_SM);
+}
+
static void e1000_release_eeprom(struct e1000_hw *hw)
{
if (hw->eeprom.release)
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 20/21] e1000: Add a "poll register" function
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (18 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 19/21] e1000: Add EEPROM access locking for i210 Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 21/21] e1000: Expose i210's iNVM as a cdev Andrey Smirnov
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 4 ++++
drivers/net/e1000/regio.c | 16 ++++++++++++++++
2 files changed, 20 insertions(+)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index b47d538..73f2b98 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -2139,5 +2139,9 @@ int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
int32_t e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
+int e1000_poll_reg(struct e1000_hw *hw, uint32_t reg,
+ uint32_t mask, uint32_t value,
+ uint64_t timeout);
+
#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/regio.c b/drivers/net/e1000/regio.c
index 33012be..11b7d4b 100644
--- a/drivers/net/e1000/regio.c
+++ b/drivers/net/e1000/regio.c
@@ -53,3 +53,19 @@ void e1000_write_flush(struct e1000_hw *hw)
{
e1000_read_reg(hw, E1000_STATUS);
}
+
+int e1000_poll_reg(struct e1000_hw *hw, uint32_t reg, uint32_t mask,
+ uint32_t value, uint64_t timeout)
+{
+ const uint64_t start = get_time_ns();
+
+ do {
+ const uint32_t v = e1000_read_reg(hw, reg);
+
+ if ((v & mask) == value)
+ return 0;
+
+ } while (!is_timeout(start, timeout));
+
+ return -ETIMEDOUT;
+}
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* [PATCH 21/21] e1000: Expose i210's iNVM as a cdev
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
` (19 preceding siblings ...)
2016-05-31 17:09 ` [PATCH 20/21] e1000: Add a "poll register" function Andrey Smirnov
@ 2016-05-31 17:09 ` Andrey Smirnov
20 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-05-31 17:09 UTC (permalink / raw)
To: barebox; +Cc: Andrey Smirnov
Add code needed to expose iNVM memory on the chip as a cdev. The
driver also registers a dummy "invm" device that exposes "locked"
property which is used to implement iNMV line locking feature.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
---
drivers/net/e1000/e1000.h | 35 +++++
drivers/net/e1000/eeprom.c | 312 +++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 347 insertions(+)
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 73f2b98..b45a364 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -1973,6 +1973,11 @@ struct e1000_eeprom_info {
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+#define E1000_PCIEMISC 0x05BB8
+#define E1000_PCIEMISC_DMA_IDLE (1 << 9)
+#define E1000_PCIEMISC_RESERVED_MASK (~(E1000_PCIEMISC_DMA_IDLE))
+#define E1000_PCIEMISC_RESERVED_PATTERN1 0x8A
+#define E1000_PCIEMISC_RESERVED_PATTERN2 (0x122 << 10)
/* SPI EEPROM Status Register */
#define EEPROM_STATUS_RDY_SPI 0x01
@@ -2087,6 +2092,29 @@ struct e1000_eeprom_info {
after IMS clear */
+
+#define E1000_INVM_TEST(n) (0x122A0 + 4 * (n))
+#define E1000_INVM_DATA_(n) (0x12120 + 4 * (n))
+#if 0
+#define E1000_INVM_DATA(n) E1000_INVM_TEST(n)
+#else
+#define E1000_INVM_DATA(n) E1000_INVM_DATA_(n)
+#endif
+
+#define E1000_INVM_LOCK(n) (0x12220 + 4 * (n))
+#define E1000_INVM_LOCK_BIT (1 << 0)
+
+#define E1000_INVM_PROTECT 0x12324
+#define E1000_INVM_PROTECT_CODE (0xABACADA << 4)
+#define E1000_INVM_PROTECT_BUSY (1 << 2)
+#define E1000_INVM_PROTECT_WRITE_ERROR (1 << 1)
+#define E1000_INVM_PROTECT_ALLOW_WRITE (1 << 0)
+
+#define E1000_INVM_DATA_MAX_N 63
+
+#define E1000_EEMNGCTL_CFG_DONE (1 << 18)
+
+
struct e1000_hw {
struct eth_device edev;
@@ -2101,6 +2129,13 @@ struct e1000_hw {
e1000_media_type media_type;
e1000_fc_type fc;
struct e1000_eeprom_info eeprom;
+
+ struct {
+ struct cdev cdev;
+ struct device_d dev;
+ int line;
+ } invm;
+
uint32_t phy_id;
uint32_t phy_revision;
uint32_t original_fc;
diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c
index 9032c12..55ccf37 100644
--- a/drivers/net/e1000/eeprom.c
+++ b/drivers/net/e1000/eeprom.c
@@ -773,3 +773,315 @@ int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
return -E1000_ERR_EEPROM;
}
+
+static ssize_t e1000_invm_cdev_read(struct cdev *cdev, void *buf,
+ size_t count, loff_t offset, unsigned long flags)
+{
+ uint8_t n, bnr;
+ uint32_t line;
+ size_t chunk, residue = count;
+ struct e1000_hw *hw = container_of(cdev, struct e1000_hw, invm.cdev);
+
+ n = offset / sizeof(line);
+ if (n > E1000_INVM_DATA_MAX_N)
+ return -EINVAL;
+
+ bnr = offset % sizeof(line);
+ if (bnr) {
+ /*
+ * if bnr in not zero it means we have a non 4-byte
+ * aligned start and need to do a partial read
+ */
+ const uint8_t *bptr;
+
+ bptr = (uint8_t *)&line + bnr;
+ chunk = min(bnr - sizeof(line), count);
+ line = e1000_read_reg(hw, E1000_INVM_DATA(n));
+ line = cpu_to_le32(line); /* to account for readl */
+ memcpy(buf, bptr, chunk);
+
+ goto start_adjusted;
+ }
+
+ do {
+ if (n > E1000_INVM_DATA_MAX_N)
+ return -EINVAL;
+
+ chunk = min(sizeof(line), residue);
+ line = e1000_read_reg(hw, E1000_INVM_DATA(n));
+ line = cpu_to_le32(line); /* to account for readl */
+
+ /*
+ * by using memcpy in conjunction with min should get
+ * dangling tail reads as well as aligned reads
+ */
+ memcpy(buf, &line, chunk);
+
+ start_adjusted:
+ residue -= chunk;
+ buf += chunk;
+ n++;
+ } while (residue);
+
+ return count;
+}
+
+static int e1000_invm_program(struct e1000_hw *hw, u32 offset, u32 value,
+ unsigned int delay)
+{
+ int retries = 400;
+ do {
+ if ((e1000_read_reg(hw, offset) & value) == value)
+ return E1000_SUCCESS;
+
+ e1000_write_reg(hw, offset, value);
+
+ if (delay) {
+ udelay(delay);
+ } else {
+ int ret;
+
+ if (e1000_read_reg(hw, E1000_INVM_PROTECT) &
+ E1000_INVM_PROTECT_WRITE_ERROR) {
+ dev_err(hw->dev, "Error while writing to %x\n", offset);
+ return -EIO;
+ }
+
+ ret = e1000_poll_reg(hw, E1000_INVM_PROTECT,
+ E1000_INVM_PROTECT_BUSY,
+ 0, SECOND);
+ if (ret < 0) {
+ dev_err(hw->dev,
+ "Timeout while waiting for INVM_PROTECT.BUSY\n");
+ return ret;
+ }
+ }
+ } while (retries--);
+
+ return -ETIMEDOUT;
+}
+
+static int e1000_invm_set_lock(struct param_d *param, void *priv)
+{
+ struct e1000_hw *hw = priv;
+
+ if (hw->invm.line > 31)
+ return -EINVAL;
+
+ return e1000_invm_program(hw,
+ E1000_INVM_LOCK(hw->invm.line),
+ E1000_INVM_LOCK_BIT,
+ 10);
+}
+
+static int e1000_invm_unlock(struct e1000_hw *hw)
+{
+ e1000_write_reg(hw, E1000_INVM_PROTECT, E1000_INVM_PROTECT_CODE);
+ /*
+ * If we were successful at unlocking iNVM for programming we
+ * should see ALLOW_WRITE bit toggle to 1
+ */
+ if (!(e1000_read_reg(hw, E1000_INVM_PROTECT) &
+ E1000_INVM_PROTECT_ALLOW_WRITE))
+ return -EIO;
+ else
+ return E1000_SUCCESS;
+}
+
+static void e1000_invm_lock(struct e1000_hw *hw)
+{
+ e1000_write_reg(hw, E1000_INVM_PROTECT, 0);
+}
+
+static int e1000_invm_write_prepare(struct e1000_hw *hw)
+{
+ int ret;
+ /*
+ * This needs to be done accorging to the datasheet p. 541 and
+ * p. 79
+ */
+ e1000_write_reg(hw, E1000_PCIEMISC,
+ E1000_PCIEMISC_RESERVED_PATTERN1 |
+ E1000_PCIEMISC_DMA_IDLE |
+ E1000_PCIEMISC_RESERVED_PATTERN2);
+
+ /*
+ * Needed for programming iNVM on devices with Flash with valid
+ * contents attached
+ */
+ ret = e1000_poll_reg(hw, E1000_EEMNGCTL,
+ E1000_EEMNGCTL_CFG_DONE,
+ E1000_EEMNGCTL_CFG_DONE, SECOND);
+ if (ret < 0) {
+ dev_err(hw->dev,
+ "Timeout while waiting for EEMNGCTL.CFG_DONE\n");
+ return ret;
+ }
+
+ udelay(15);
+
+ return E1000_SUCCESS;
+}
+
+static ssize_t e1000_invm_cdev_write(struct cdev *cdev, const void *buf,
+ size_t count, loff_t offset, unsigned long flags)
+{
+ int ret;
+ uint8_t n, bnr;
+ uint32_t line;
+ size_t chunk, residue = count;
+ struct e1000_hw *hw = container_of(cdev, struct e1000_hw, invm.cdev);
+
+ ret = e1000_invm_write_prepare(hw);
+ if (ret < 0)
+ return ret;
+
+ ret = e1000_invm_unlock(hw);
+ if (ret < 0)
+ goto exit;
+
+ n = offset / sizeof(line);
+ if (n > E1000_INVM_DATA_MAX_N) {
+ ret = -EINVAL;
+ goto exit;
+ }
+
+ bnr = offset % sizeof(line);
+ if (bnr) {
+ uint8_t *bptr;
+ /*
+ * if bnr in not zero it means we have a non 4-byte
+ * aligned start and need to do a read-modify-write
+ * sequence
+ */
+
+ /* Read */
+ line = e1000_read_reg(hw, E1000_INVM_DATA(n));
+
+ /* Modify */
+ /*
+ * We need to ensure that line is LE32 in order for
+ * memcpy to copy byte from least significant to most
+ * significant, since that's how i210 will write the
+ * 32-bit word out to OTP
+ */
+ line = cpu_to_le32(line);
+ bptr = (uint8_t *)&line + bnr;
+ chunk = min(sizeof(line) - bnr, count);
+ memcpy(bptr, buf, chunk);
+ line = le32_to_cpu(line);
+
+ /* Jumping inside of the loop to take care of the
+ * Write */
+ goto start_adjusted;
+ }
+
+ do {
+ if (n > E1000_INVM_DATA_MAX_N) {
+ ret = -EINVAL;
+ goto exit;
+ }
+
+ chunk = min(sizeof(line), residue);
+ if (chunk != sizeof(line)) {
+ /*
+ * If chunk is smaller that sizeof(line), which
+ * should be 4 bytes, we have a "dangling"
+ * chunk and we should read the unchanged
+ * portion of the 4-byte word from iNVM and do
+ * a read-modify-write sequence
+ */
+ line = e1000_read_reg(hw, E1000_INVM_DATA(n));
+ }
+
+ line = cpu_to_le32(line);
+ memcpy(&line, buf, chunk);
+ line = le32_to_cpu(line);
+
+ start_adjusted:
+ /*
+ * iNVM is organized in 32 64-bit lines and each of
+ * those lines can be locked to prevent any further
+ * modification, so for every i-th 32-bit word we need
+ * to check INVM_LINE[i/2] register to see if that word
+ * can be modified
+ */
+ if (e1000_read_reg(hw, E1000_INVM_LOCK(n / 2)) &
+ E1000_INVM_LOCK_BIT) {
+ dev_err(hw->dev, "line %d is locked\n", n / 2);
+ ret = -EIO;
+ goto exit;
+ }
+
+ ret = e1000_invm_program(hw,
+ E1000_INVM_DATA(n),
+ line,
+ 0);
+ if (ret < 0)
+ goto exit;
+
+ residue -= chunk;
+ buf += chunk;
+ n++;
+ } while (residue);
+
+ ret = E1000_SUCCESS;
+exit:
+ e1000_invm_lock(hw);
+ return ret;
+}
+
+static struct file_operations e1000_invm_ops = {
+ .read = e1000_invm_cdev_read,
+ .write = e1000_invm_cdev_write,
+ .lseek = dev_lseek_default,
+};
+
+int e1000_register_eeprom(struct e1000_hw *hw)
+{
+ int ret = E1000_SUCCESS;
+ u16 word;
+ struct param_d *p;
+
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+
+ switch (eeprom->type) {
+ case e1000_eeprom_invm:
+ ret = e1000_read_eeprom(hw, 0x0A, 1, &word);
+ if (ret < 0)
+ return ret;
+
+ if (word & (1 << 15))
+ dev_warn(hw->dev, "iNVM lockout mechanism is active\n");
+
+ hw->invm.cdev.dev = hw->dev;
+ hw->invm.cdev.ops = &e1000_invm_ops;
+ hw->invm.cdev.priv = hw;
+ hw->invm.cdev.name = xasprintf("e1000-invm%d", hw->dev->id);
+ hw->invm.cdev.size = 32 * E1000_INVM_DATA_MAX_N;
+
+ ret = devfs_create(&hw->invm.cdev);
+ if (ret < 0)
+ break;
+
+ strcpy(hw->invm.dev.name, "invm");
+ hw->invm.dev.parent = hw->dev;
+ ret = register_device(&hw->invm.dev);
+ if (ret < 0) {
+ devfs_remove(&hw->invm.cdev);
+ break;
+ }
+
+ p = dev_add_param_int(&hw->invm.dev, "lock", e1000_invm_set_lock,
+ NULL, &hw->invm.line, "%u", hw);
+ if (IS_ERR(p)) {
+ unregister_device(&hw->invm.dev);
+ devfs_remove(&hw->invm.cdev);
+ break;
+ }
+
+ break;
+ }
+
+ return ret;
+}
--
2.5.5
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* Re: [PATCH 08/21] e1000: Consolidate register offset fixups
2016-05-31 17:09 ` [PATCH 08/21] e1000: Consolidate register offset fixups Andrey Smirnov
@ 2016-05-31 20:42 ` Trent Piepho
2016-06-01 21:35 ` Andrey Smirnov
0 siblings, 1 reply; 24+ messages in thread
From: Trent Piepho @ 2016-05-31 20:42 UTC (permalink / raw)
To: Andrey Smirnov; +Cc: barebox
On Tue, 2016-05-31 at 10:09 -0700, Andrey Smirnov wrote:
> Consolidate all code taking care on CSR offset differences for i210
> chips into a single place in the driver and integrate that
> funcionality into E1000_{READ,WRITE}_REG macros. This way we can get
> rid of all those
>
> if (hw->mac_type == e1000_igb) {
> ....
> } else {
> ....
> }
>
> snippets sprinkled all across the driver code.
>
> +
> +static inline uint32_t e1000_true_offset(struct e1000_hw *hw, uint32_t reg)
> +{
Any reason this needs to be inlined? gcc space vs size optimization
choice usually does the right thing.
> + if (hw->mac_type == e1000_igb) {
> + unsigned int i;
> +
> + const struct e1000_fixup_table fixup_table[] = {
> + { E1000_EEWR, E1000_I210_EEWR },
> + { E1000_PHY_CTRL, E1000_I210_PHY_CTRL },
> + { E1000_EEMNGCTL, E1000_I210_EEMNGCTL },
> + };
> +
> + for (i = 0; i < ARRAY_SIZE(fixup_table); i++) {
> + if (fixup_table[i].orig == reg)
> + return fixup_table[i].fixed;
> + }
Looping through the table on each reg access seems a bit costly. What
if the registers with different addresses had a flag bit in their
definition? Then you could check the bit and only translate those that
need translating. It would also document in the register definition
that the register got translated.
#define I210_ALT 0x100000 /* register has alternate addr on I210 */
#define E1000_EEWR (0x0102C | I210_ALT)/* EEPROM Write Register - RW */
if (reg & I210_ALT) {
reg &= ~I210_ALT;
if (hw->mac_type == e1000_igb) {
/* look up alternate. note a case statement can be faster... */
case (reg) {
case E1000_EEWR: reg = E1000_I210_EEWR; break;
default: ;
}
}
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
* Re: [PATCH 08/21] e1000: Consolidate register offset fixups
2016-05-31 20:42 ` Trent Piepho
@ 2016-06-01 21:35 ` Andrey Smirnov
0 siblings, 0 replies; 24+ messages in thread
From: Andrey Smirnov @ 2016-06-01 21:35 UTC (permalink / raw)
To: Trent Piepho; +Cc: barebox
On Tue, May 31, 2016 at 1:42 PM, Trent Piepho <tpiepho@kymetacorp.com> wrote:
> On Tue, 2016-05-31 at 10:09 -0700, Andrey Smirnov wrote:
>> Consolidate all code taking care on CSR offset differences for i210
>> chips into a single place in the driver and integrate that
>> funcionality into E1000_{READ,WRITE}_REG macros. This way we can get
>> rid of all those
>>
>> if (hw->mac_type == e1000_igb) {
>> ....
>> } else {
>> ....
>> }
>>
>> snippets sprinkled all across the driver code.
>>
>> +
>> +static inline uint32_t e1000_true_offset(struct e1000_hw *hw, uint32_t reg)
>> +{
>
> Any reason this needs to be inlined? gcc space vs size optimization
> choice usually does the right thing.
No reason, just a leftover of copy and paste from header file (I
initially put those functions there). Will fix in v2.
>
>> + if (hw->mac_type == e1000_igb) {
>> + unsigned int i;
>> +
>> + const struct e1000_fixup_table fixup_table[] = {
>> + { E1000_EEWR, E1000_I210_EEWR },
>> + { E1000_PHY_CTRL, E1000_I210_PHY_CTRL },
>> + { E1000_EEMNGCTL, E1000_I210_EEMNGCTL },
>> + };
>> +
>> + for (i = 0; i < ARRAY_SIZE(fixup_table); i++) {
>> + if (fixup_table[i].orig == reg)
>> + return fixup_table[i].fixed;
>> + }
>
> Looping through the table on each reg access seems a bit costly. What
> if the registers with different addresses had a flag bit in their
> definition? Then you could check the bit and only translate those that
> need translating. It would also document in the register definition
> that the register got translated.
>
> #define I210_ALT 0x100000 /* register has alternate addr on I210 */
> #define E1000_EEWR (0x0102C | I210_ALT)/* EEPROM Write Register - RW */
>
> if (reg & I210_ALT) {
> reg &= ~I210_ALT;
> if (hw->mac_type == e1000_igb) {
> /* look up alternate. note a case statement can be faster... */
> case (reg) {
> case E1000_EEWR: reg = E1000_I210_EEWR; break;
> default: ;
> }
> }
>
Sure, sounds like a good idea, will do in v2.
Thanks,
Andrey
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
^ permalink raw reply [flat|nested] 24+ messages in thread
end of thread, other threads:[~2016-06-01 21:36 UTC | newest]
Thread overview: 24+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2016-05-31 17:09 [PATCH 00/21] e1000 code cleanup and iNVM support Andrey Smirnov
2016-05-31 17:09 ` [PATCH 01/21] e1000: Split driver into multiple files Andrey Smirnov
2016-05-31 17:09 ` [PATCH 02/21] e1000: Include <net.h> in e1000.h Andrey Smirnov
2016-05-31 17:09 ` [PATCH 03/21] e1000: Convert E1000_*_REG macros to functions Andrey Smirnov
2016-05-31 17:09 ` [PATCH 04/21] e1000: Fix a bug in e1000_detect_gig_phy Andrey Smirnov
2016-05-31 17:09 ` [PATCH 05/21] e1000: Remove unnecessary variable Andrey Smirnov
2016-05-31 17:09 ` [PATCH 06/21] e1000: Do not read same register twice Andrey Smirnov
2016-05-31 17:09 ` [PATCH 07/21] e1000: Remove unneeded i210 specific register code Andrey Smirnov
2016-05-31 17:09 ` [PATCH 08/21] e1000: Consolidate register offset fixups Andrey Smirnov
2016-05-31 20:42 ` Trent Piepho
2016-06-01 21:35 ` Andrey Smirnov
2016-05-31 17:09 ` [PATCH 09/21] e1000: Remove 'use_eewr' parameter Andrey Smirnov
2016-05-31 17:09 ` [PATCH 10/21] e1000: Remove 'page_size' Andrey Smirnov
2016-05-31 17:09 ` [PATCH 11/21] e1000: Simplify EEPROM init for e1000_80003es2lan Andrey Smirnov
2016-05-31 17:09 ` [PATCH 12/21] e1000: Simplify EEPROM init for e1000_igb Andrey Smirnov
2016-05-31 17:09 ` [PATCH 13/21] e1000: Consolidate SPI EEPROM init code Andrey Smirnov
2016-05-31 17:09 ` [PATCH 14/21] e1000: Consolidate Microwire " Andrey Smirnov
2016-05-31 17:09 ` [PATCH 15/21] e1000: Fix a bug in e1000_probe() Andrey Smirnov
2016-05-31 17:09 ` [PATCH 16/21] e1000: Remove unnecessary intialization Andrey Smirnov
2016-05-31 17:09 ` [PATCH 17/21] e1000: Refactor Flash/EEPROM reading code Andrey Smirnov
2016-05-31 17:09 ` [PATCH 18/21] e1000: Properly release SW_FW_SYNC semaphore bits Andrey Smirnov
2016-05-31 17:09 ` [PATCH 19/21] e1000: Add EEPROM access locking for i210 Andrey Smirnov
2016-05-31 17:09 ` [PATCH 20/21] e1000: Add a "poll register" function Andrey Smirnov
2016-05-31 17:09 ` [PATCH 21/21] e1000: Expose i210's iNVM as a cdev Andrey Smirnov
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox