From mboxrd@z Thu Jan 1 00:00:00 1970 Return-path: Received: from mail-pf0-x242.google.com ([2607:f8b0:400e:c00::242]) by bombadil.infradead.org with esmtps (Exim 4.80.1 #2 (Red Hat Linux)) id 1b8KjD-000230-F3 for barebox@lists.infradead.org; Thu, 02 Jun 2016 05:01:01 +0000 Received: by mail-pf0-x242.google.com with SMTP id b124so6535060pfb.0 for ; Wed, 01 Jun 2016 21:59:12 -0700 (PDT) From: Andrey Smirnov Date: Wed, 1 Jun 2016 21:58:30 -0700 Message-Id: <1464843531-1824-2-git-send-email-andrew.smirnov@gmail.com> In-Reply-To: <1464843531-1824-1-git-send-email-andrew.smirnov@gmail.com> References: <1464843531-1824-1-git-send-email-andrew.smirnov@gmail.com> List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , MIME-Version: 1.0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Sender: "barebox" Errors-To: barebox-bounces+u.kleine-koenig=pengutronix.de@lists.infradead.org Subject: [PATCH v2 01/22] e1000: Split driver into multiple files To: barebox@lists.infradead.org Cc: Andrey Smirnov The driver has a number of not very tightly coupled subsystems and at 4K+ lines e1000.c is getting rather hard to wrangle, so let's move EEPROM handling code (very self contained susbsystem) into a separate file and put all of the driver into a dedicated subdirectory. Signed-off-by: Andrey Smirnov --- drivers/net/Makefile | 2 +- drivers/net/e1000.c | 4455 -------------------------------------------- drivers/net/e1000.h | 2093 --------------------- drivers/net/e1000/e1000.h | 2139 +++++++++++++++++++++ drivers/net/e1000/eeprom.c | 747 ++++++++ drivers/net/e1000/main.c | 3681 ++++++++++++++++++++++++++++++++++++ 6 files changed, 6568 insertions(+), 6549 deletions(-) delete mode 100644 drivers/net/e1000.c delete mode 100644 drivers/net/e1000.h create mode 100644 drivers/net/e1000/e1000.h create mode 100644 drivers/net/e1000/eeprom.c create mode 100644 drivers/net/e1000/main.c diff --git a/drivers/net/Makefile b/drivers/net/Makefile index f53cb80..08166d2 100644 --- a/drivers/net/Makefile +++ b/drivers/net/Makefile @@ -10,7 +10,7 @@ obj-$(CONFIG_DRIVER_NET_CPSW) += cpsw.o obj-$(CONFIG_DRIVER_NET_DAVINCI_EMAC) += davinci_emac.o obj-$(CONFIG_DRIVER_NET_DESIGNWARE) += designware.o obj-$(CONFIG_DRIVER_NET_DM9K) += dm9k.o -obj-$(CONFIG_DRIVER_NET_E1000) += e1000.o +obj-$(CONFIG_DRIVER_NET_E1000) += e1000/main.o e1000/eeprom.o obj-$(CONFIG_DRIVER_NET_ENC28J60) += enc28j60.o obj-$(CONFIG_DRIVER_NET_EP93XX) += ep93xx.o obj-$(CONFIG_DRIVER_NET_ETHOC) += ethoc.o diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c deleted file mode 100644 index a7acfd0..0000000 --- a/drivers/net/e1000.c +++ /dev/null @@ -1,4455 +0,0 @@ -/************************************************************************** -Intel Pro 1000 for ppcboot/das-u-boot -Drivers are port from Intel's Linux driver e1000-4.3.15 -and from Etherboot pro 1000 driver by mrakes at vivato dot net -tested on both gig copper and gig fiber boards -***************************************************************************/ -/******************************************************************************* - - - Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. - - * SPDX-License-Identifier: GPL-2.0+ - - Contact Information: - Linux NICS - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ -/* - * Copyright (C) Archway Digital Solutions. - * - * written by Chrsitopher Li or - * 2/9/2002 - * - * Copyright (C) Linux Networx. - * Massive upgrade to work with the new intel gigabit NICs. - * - * - * Copyright 2011 Freescale Semiconductor, Inc. - */ - -#include -#include -#include -#include -#include -#include -#include "e1000.h" - -static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr) -{ - return (u32)adr; -} - -#define PCI_VENDOR_ID_INTEL 0x8086 - -struct e1000_hw { - struct eth_device edev; - - struct pci_dev *pdev; - struct device_d *dev; - - void __iomem *hw_addr; - - e1000_mac_type mac_type; - e1000_phy_type phy_type; - uint32_t txd_cmd; - e1000_media_type media_type; - e1000_fc_type fc; - struct e1000_eeprom_info eeprom; - uint32_t phy_id; - uint32_t phy_revision; - uint32_t original_fc; - uint32_t autoneg_failed; - uint16_t autoneg_advertised; - uint16_t pci_cmd_word; - uint16_t device_id; - uint16_t vendor_id; - uint8_t revision_id; - struct mii_bus miibus; - - struct e1000_tx_desc *tx_base; - struct e1000_rx_desc *rx_base; - unsigned char *packet; - - int tx_tail; - int rx_tail, rx_last; -}; - -/* Function forward declarations */ -static int e1000_setup_link(struct e1000_hw *hw); -static int e1000_setup_fiber_link(struct e1000_hw *hw); -static int e1000_setup_copper_link(struct e1000_hw *hw); -static int e1000_phy_setup_autoneg(struct e1000_hw *hw); -static void e1000_config_collision_dist(struct e1000_hw *hw); -static int e1000_config_mac_to_phy(struct e1000_hw *hw); -static int e1000_config_fc_after_link_up(struct e1000_hw *hw); -static int e1000_wait_autoneg(struct e1000_hw *hw); -static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, - uint16_t *duplex); -static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t *phy_data); -static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t phy_data); -static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); -static int e1000_phy_reset(struct e1000_hw *hw); -static int e1000_detect_gig_phy(struct e1000_hw *hw); -static void e1000_set_media_type(struct e1000_hw *hw); - -static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); -static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); - -static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); -static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, - uint16_t words, - uint16_t *data); - -static bool e1000_media_copper(struct e1000_hw *hw) -{ - if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) - return 1; - - return hw->media_type == e1000_media_type_copper; -} - -static bool e1000_media_fiber(struct e1000_hw *hw) -{ - if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) - return 0; - - return hw->media_type == e1000_media_type_fiber; -} - -static bool e1000_media_fiber_serdes(struct e1000_hw *hw) -{ - if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) - return 0; - - return hw->media_type == e1000_media_type_fiber || - hw->media_type == e1000_media_type_internal_serdes; -} - -/****************************************************************************** - * Raises the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd) -{ - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(50); -} - -/****************************************************************************** - * Lowers the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd) -{ - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(50); -} - -/****************************************************************************** - * Shift data bits out to the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * data - data to send to the EEPROM - * count - number of bits to shift out - *****************************************************************************/ -static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) -{ - uint32_t eecd; - uint32_t mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = E1000_READ_REG(hw, EECD); - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - - udelay(50); - - e1000_raise_ee_clk(hw, &eecd); - e1000_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while (mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, EECD, eecd); -} - -/****************************************************************************** - * Shift data bits in from the EEPROM - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) -{ - uint32_t eecd; - uint32_t i; - uint16_t data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the - * value of the "DO" bit. During this "shifting in" process the - * "DI" bit should always be clear. - */ - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data = data << 1; - e1000_raise_ee_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_ee_clk(hw, &eecd); - } - - return data; -} - -/****************************************************************************** - * Returns EEPROM to a "standby" state - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void e1000_standby_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - - eecd = E1000_READ_REG(hw, EECD); - - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } -} - -/*************************************************************************** -* Description: Determines if the onboard NVM is FLASH or EEPROM. -* -* hw - Struct containing variables accessed by shared code -****************************************************************************/ -static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) -{ - uint32_t eecd = 0; - - DEBUGFUNC(); - - if (hw->mac_type == e1000_ich8lan) - return false; - - if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { - eecd = E1000_READ_REG(hw, EECD); - - /* Isolate bits 15 & 16 */ - eecd = ((eecd >> 15) & 0x03); - - /* If both bits are set, device is Flash type */ - if (eecd == 0x03) - return false; - } - return true; -} - -/****************************************************************************** - * Prepares EEPROM for access - * - * hw - Struct containing variables accessed by shared code - * - * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This - * function should be called before issuing a command to the EEPROM. - *****************************************************************************/ -static int32_t e1000_acquire_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd, i = 0; - - DEBUGFUNC(); - - if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) - return -E1000_ERR_SWFW_SYNC; - eecd = E1000_READ_REG(hw, EECD); - - /* Request EEPROM Access */ - if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 && - hw->mac_type != e1000_82574) { - eecd |= E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - eecd = E1000_READ_REG(hw, EECD); - while ((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - udelay(5); - eecd = E1000_READ_REG(hw, EECD); - } - if (!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - dev_dbg(hw->dev, "Could not acquire EEPROM grant\n"); - return -E1000_ERR_EEPROM; - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == e1000_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - udelay(1); - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Sets up eeprom variables in the hw struct. Must be called after mac_type - * is configured. Additionally, if this is ICH8, the flash controller GbE - * registers must be mapped, or this will crash. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - int32_t ret_val = E1000_SUCCESS; - uint16_t eeprom_size; - - if (hw->mac_type == e1000_igb) - eecd = E1000_READ_REG(hw, I210_EECD); - else - eecd = E1000_READ_REG(hw, EECD); - - DEBUGFUNC(); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - eeprom->type = e1000_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82571: - case e1000_82572: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82573: - case e1000_82574: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - if (e1000_is_onboard_nvm_eeprom(hw) == false) { - eeprom->use_eerd = true; - eeprom->use_eewr = true; - - eeprom->type = e1000_eeprom_flash; - eeprom->word_size = 2048; - - /* Ensure that the Autonomous FLASH update bit is cleared due to - * Flash update issue on parts which use a FLASH for NVM. */ - eecd &= ~E1000_EECD_AUPDEN; - E1000_WRITE_REG(hw, EECD, eecd); - } - break; - case e1000_80003es2lan: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = true; - eeprom->use_eewr = false; - break; - case e1000_igb: - /* i210 has 4k of iNVM mapped as EEPROM */ - eeprom->type = e1000_eeprom_invm; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - eeprom->page_size = 32; - eeprom->address_bits = 16; - eeprom->use_eerd = true; - eeprom->use_eewr = false; - break; - default: - break; - } - - if (eeprom->type == e1000_eeprom_spi || - eeprom->type == e1000_eeprom_invm) { - /* eeprom_size will be an enum [0..8] that maps - * to eeprom sizes 128B to - * 32KB (incremented by powers of 2). - */ - if (hw->mac_type <= e1000_82547_rev_2) { - /* Set to default value for initial eeprom read. */ - eeprom->word_size = 64; - ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, - &eeprom_size); - if (ret_val) - return ret_val; - eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) - >> EEPROM_SIZE_SHIFT; - /* 256B eeprom size was not supported in earlier - * hardware, so we bump eeprom_size up one to - * ensure that "1" (which maps to 256B) is never - * the result used in the shifting logic below. */ - if (eeprom_size) - eeprom_size++; - } else { - eeprom_size = (uint16_t)((eecd & - E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - } - - eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); - } - return ret_val; -} - -/****************************************************************************** - * Polls the status bit (bit 1) of the EERD to determine when the read is done. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) -{ - uint32_t attempts = 100000; - uint32_t i, reg = 0; - int32_t done = E1000_ERR_EEPROM; - - for (i = 0; i < attempts; i++) { - if (eerd == E1000_EEPROM_POLL_READ) { - if (hw->mac_type == e1000_igb) - reg = E1000_READ_REG(hw, I210_EERD); - else - reg = E1000_READ_REG(hw, EERD); - } else { - if (hw->mac_type == e1000_igb) - reg = E1000_READ_REG(hw, I210_EEWR); - else - reg = E1000_READ_REG(hw, EEWR); - } - - if (reg & E1000_EEPROM_RW_REG_DONE) { - done = E1000_SUCCESS; - break; - } - udelay(5); - } - - return done; -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM using the EERD register. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - uint32_t i, eerd = 0; - int32_t error = 0; - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + - E1000_EEPROM_RW_REG_START; - - if (hw->mac_type == e1000_igb) - E1000_WRITE_REG(hw, I210_EERD, eerd); - else - E1000_WRITE_REG(hw, EERD, eerd); - - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - - if (error) - break; - - if (hw->mac_type == e1000_igb) { - data[i] = (E1000_READ_REG(hw, I210_EERD) >> - E1000_EEPROM_RW_REG_DATA); - } else { - data[i] = (E1000_READ_REG(hw, EERD) >> - E1000_EEPROM_RW_REG_DATA); - } - - } - - return error; -} - -static void e1000_release_eeprom(struct e1000_hw *hw) -{ - uint32_t eecd; - - DEBUGFUNC(); - - eecd = E1000_READ_REG(hw, EECD); - - if (hw->eeprom.type == e1000_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ - - E1000_WRITE_REG(hw, EECD, eecd); - - udelay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == e1000_eeprom_microwire) { - /* cleanup eeprom */ - - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - - E1000_WRITE_REG(hw, EECD, eecd); - - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - } - - /* Stop requesting EEPROM access */ - if (hw->mac_type > e1000_82544) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - } -} -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw) -{ - uint16_t retry_count = 0; - uint8_t spi_stat_reg; - - DEBUGFUNC(); - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - udelay(5); - retry_count += 5; - - e1000_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { - dev_dbg(hw->dev, "SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - *****************************************************************************/ -static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, - uint16_t words, uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t i = 0; - - DEBUGFUNC(); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= eeprom->word_size) || - (words > eeprom->word_size - offset) || - (words == 0)) { - dev_dbg(hw->dev, "\"words\" parameter out of bounds." - "Words = %d, size = %d\n", offset, eeprom->word_size); - return -E1000_ERR_EEPROM; - } - - /* EEPROM's that don't use EERD to read require us to bit-bang the SPI - * directly. In this case, we need to acquire the EEPROM so that - * FW or other port software does not interrupt. - */ - if (e1000_is_onboard_nvm_eeprom(hw) == true && - hw->eeprom.use_eerd == false) { - - /* Prepare the EEPROM for bit-bang reading */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Eerd register EEPROM access requires no eeprom aquire/release */ - if (eeprom->use_eerd == true) - return e1000_read_eeprom_eerd(hw, offset, words, data); - - /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should relase it */ - if (eeprom->type == e1000_eeprom_spi) { - uint16_t word_in; - uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) { - e1000_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in - * the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), - eeprom->address_bits); - - /* Read the data. The address of the eeprom internally - * increments with each byte (spi) being read, saving on the - * overhead of eeprom setup and tear-down. The address - * counter will roll over if reading beyond the size of - * the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if (eeprom->type == e1000_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, - EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires - * the overhead of eeprom setup and tear-down. */ - data[i] = e1000_shift_in_ee_bits(hw, 16); - e1000_standby_eeprom(hw); - } - } - - /* End this read operation */ - e1000_release_eeprom(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Verifies that the EEPROM has a valid checksum - * - * hw - Struct containing variables accessed by shared code - * - * Reads the first 64 16 bit words of the EEPROM and sums the values read. - * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is - * valid. - *****************************************************************************/ -static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) -{ - uint16_t i, checksum, checksum_reg; - uint16_t buf[EEPROM_CHECKSUM_REG + 1]; - - DEBUGFUNC(); - - /* Read the EEPROM */ - if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { - dev_err(&hw->edev.dev, "Unable to read EEPROM!\n"); - return -E1000_ERR_EEPROM; - } - - /* Compute the checksum */ - checksum = 0; - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) - checksum += buf[i]; - checksum = ((uint16_t)EEPROM_SUM) - checksum; - checksum_reg = buf[i]; - - /* Verify it! */ - if (checksum == checksum_reg) - return 0; - - /* Hrm, verification failed, print an error */ - dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n"); - dev_err(&hw->edev.dev, " ...register was 0x%04hx, calculated 0x%04hx\n", - checksum_reg, checksum); - - return -E1000_ERR_EEPROM; -} - -/***************************************************************************** - * Set PHY to class A mode - * Assumes the following operations will follow to enable the new class mode. - * 1. Do a PHY soft reset - * 2. Restart auto-negotiation or force link. - * - * hw - Struct containing variables accessed by shared code - ****************************************************************************/ -static int32_t e1000_set_phy_mode(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t eeprom_data; - - DEBUGFUNC(); - - if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) { - ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, - 1, &eeprom_data); - if (ret_val) - return ret_val; - - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { - ret_val = e1000_write_phy_reg(hw, - M88E1000_PHY_PAGE_SELECT, 0x000B); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, - M88E1000_PHY_GEN_CONTROL, 0x8104); - if (ret_val) - return ret_val; - } - } - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Obtaining software semaphore bit (SMBI) before resetting PHY. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_RESET if fail to obtain semaphore. - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t e1000_get_software_semaphore(struct e1000_hw *hw) -{ - int32_t timeout = hw->eeprom.word_size + 1; - uint32_t swsm; - - DEBUGFUNC(); - - swsm = E1000_READ_REG(hw, SWSM); - swsm &= ~E1000_SWSM_SMBI; - E1000_WRITE_REG(hw, SWSM, swsm); - - if (hw->mac_type != e1000_80003es2lan) - return E1000_SUCCESS; - - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - /* If SMBI bit cleared, it is now set and we hold - * the semaphore */ - if (!(swsm & E1000_SWSM_SMBI)) - return 0; - mdelay(1); - timeout--; - } - - dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_RESET; -} - -/*************************************************************************** - * This function clears HW semaphore bits. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - None. - * - ***************************************************************************/ -static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) -{ - uint32_t swsm; - - swsm = E1000_READ_REG(hw, SWSM); - - if (hw->mac_type == e1000_80003es2lan) - /* Release both semaphores. */ - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - else - swsm &= ~(E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, SWSM, swsm); -} - -/*************************************************************************** - * - * Using the combination of SMBI and SWESMBI semaphore bits when resetting - * adapter or Eeprom access. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_EEPROM if fail to access EEPROM. - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) -{ - int32_t timeout; - uint32_t swsm; - - if (hw->mac_type == e1000_80003es2lan) { - /* Get the SW semaphore. */ - if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Get the FW semaphore. */ - timeout = hw->eeprom.word_size + 1; - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - swsm |= E1000_SWSM_SWESMBI; - E1000_WRITE_REG(hw, SWSM, swsm); - /* if we managed to set the bit we got the semaphore. */ - swsm = E1000_READ_REG(hw, SWSM); - if (swsm & E1000_SWSM_SWESMBI) - break; - - udelay(50); - timeout--; - } - - if (!timeout) { - /* Release semaphores */ - e1000_put_hw_eeprom_semaphore(hw); - dev_dbg(hw->dev, "Driver can't access the Eeprom - " - "SWESMBI bit is set.\n"); - return -E1000_ERR_EEPROM; - } - return E1000_SUCCESS; -} - -static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) -{ - uint32_t swfw_sync = 0; - uint32_t swmask = mask; - uint32_t fwmask = mask << 16; - int32_t timeout = 200; - - DEBUGFUNC(); - while (timeout) { - if (e1000_get_hw_eeprom_semaphore(hw)) - return -E1000_ERR_SWFW_SYNC; - - swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* firmware currently using resource (fwmask) */ - /* or other software thread currently using resource (swmask) */ - e1000_put_hw_eeprom_semaphore(hw); - mdelay(5); - timeout--; - } - - if (!timeout) { - dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n"); - return -E1000_ERR_SWFW_SYNC; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); - - e1000_put_hw_eeprom_semaphore(hw); - return E1000_SUCCESS; -} - -static bool e1000_is_second_port(struct e1000_hw *hw) -{ - switch (hw->mac_type) { - case e1000_80003es2lan: - case e1000_82546: - case e1000_82571: - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - return true; - /* Fallthrough */ - default: - return false; - } -} - -/****************************************************************************** - * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the - * second function of dual function devices - * - * edev - Struct containing variables accessed by shared code - *****************************************************************************/ -static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr) -{ - struct e1000_hw *hw = edev->priv; - uint16_t eeprom_data; - uint32_t reg_data = 0; - int i; - - DEBUGFUNC(); - - if (hw->mac_type == e1000_igb) { - /* i210 preloads MAC address into RAL/RAH registers */ - reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); - adr[0] = reg_data & 0xff; - adr[1] = (reg_data >> 8) & 0xff; - adr[2] = (reg_data >> 16) & 0xff; - adr[3] = (reg_data >> 24) & 0xff; - reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); - adr[4] = reg_data & 0xff; - adr[5] = (reg_data >> 8) & 0xff; - return 0; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) { - dev_dbg(hw->dev, "EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - adr[i] = eeprom_data & 0xff; - adr[i + 1] = (eeprom_data >> 8) & 0xff; - } - - /* Invert the last bit if this is the second device */ - if (e1000_is_second_port(hw)) - adr[5] ^= 1; - - return 0; -} - -static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr) -{ - struct e1000_hw *hw = edev->priv; - uint32_t addr_low; - uint32_t addr_high; - - DEBUGFUNC(); - - dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n"); - - addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24)); - addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV); - - E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); - E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); - - return 0; -} - -/****************************************************************************** - * Clears the VLAN filter table - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void e1000_clear_vfta(struct e1000_hw *hw) -{ - uint32_t offset; - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); -} - -/****************************************************************************** - * Set the mac type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t e1000_set_mac_type(struct e1000_hw *hw) -{ - DEBUGFUNC(); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - switch (hw->revision_id) { - case E1000_82542_2_0_REV_ID: - hw->mac_type = e1000_82542_rev2_0; - break; - case E1000_82542_2_1_REV_ID: - hw->mac_type = e1000_82542_rev2_1; - break; - default: - /* Invalid 82542 revision ID */ - return -E1000_ERR_MAC_TYPE; - } - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - hw->mac_type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - hw->mac_type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - hw->mac_type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - hw->mac_type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - hw->mac_type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - hw->mac_type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - hw->mac_type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - hw->mac_type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - hw->mac_type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - hw->mac_type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - hw->mac_type = e1000_82547_rev_2; - break; - case E1000_DEV_ID_82571EB_COPPER: - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571PT_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: - hw->mac_type = e1000_82571; - break; - case E1000_DEV_ID_82572EI_COPPER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_82572EI: - hw->mac_type = e1000_82572; - break; - case E1000_DEV_ID_82573E: - case E1000_DEV_ID_82573E_IAMT: - case E1000_DEV_ID_82573L: - hw->mac_type = e1000_82573; - break; - case E1000_DEV_ID_82574L: - hw->mac_type = e1000_82574; - break; - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: - case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->mac_type = e1000_80003es2lan; - break; - case E1000_DEV_ID_ICH8_IGP_M_AMT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IFE_GT: - case E1000_DEV_ID_ICH8_IFE_G: - case E1000_DEV_ID_ICH8_IGP_M: - hw->mac_type = e1000_ich8lan; - break; - case E1000_DEV_ID_I350_COPPER: - case E1000_DEV_ID_I210_UNPROGRAMMED: - case E1000_DEV_ID_I211_UNPROGRAMMED: - case E1000_DEV_ID_I210_COPPER: - case E1000_DEV_ID_I211_COPPER: - case E1000_DEV_ID_I210_COPPER_FLASHLESS: - case E1000_DEV_ID_I210_SERDES: - case E1000_DEV_ID_I210_SERDES_FLASHLESS: - case E1000_DEV_ID_I210_1000BASEKX: - hw->mac_type = e1000_igb; - break; - default: - /* Should never have loaded on this device */ - return -E1000_ERR_MAC_TYPE; - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Reset the transmit and receive units; mask and clear all interrupts. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void e1000_reset_hw(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t reg; - - DEBUGFUNC(); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); - pci_write_config_word(hw->pdev, PCI_COMMAND, - hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); - } - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - mdelay(10); - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - dev_dbg(hw->dev, "Issuing a global reset to MAC\n"); - ctrl = E1000_READ_REG(hw, CTRL); - - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - - /* Force a reload from the EEPROM if necessary */ - if (hw->mac_type == e1000_igb) { - mdelay(20); - reg = E1000_READ_REG(hw, STATUS); - if (reg & E1000_STATUS_PF_RST_DONE) - dev_dbg(hw->dev, "PF OK\n"); - reg = E1000_READ_REG(hw, I210_EECD); - if (reg & E1000_EECD_AUTO_RD) - dev_dbg(hw->dev, "EEC OK\n"); - } else if (hw->mac_type < e1000_82540) { - uint32_t ctrl_ext; - - /* Wait for reset to complete */ - udelay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - /* Wait for EEPROM reload */ - mdelay(2); - } else { - uint32_t manc; - - /* Wait for EEPROM reload (it happens automatically) */ - mdelay(4); - /* Dissable HW ARPs on ASF enabled adapters */ - manc = E1000_READ_REG(hw, MANC); - manc &= ~(E1000_MANC_ARP_EN); - E1000_WRITE_REG(hw, MANC, manc); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - if (hw->mac_type == e1000_igb) - E1000_WRITE_REG(hw, I210_IAM, 0); - - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - E1000_READ_REG(hw, ICR); - - /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == e1000_82542_rev2_0) - pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); - - if (hw->mac_type != e1000_igb) { - if (hw->mac_type < e1000_82571) - E1000_WRITE_REG(hw, PBA, 0x00000030); - else - E1000_WRITE_REG(hw, PBA, 0x000a0026); - } -} - -/****************************************************************************** - * - * Initialize a number of hardware-dependent bits - * - * hw: Struct containing variables accessed by shared code - * - * This function contains hardware limitation workarounds for PCI-E adapters - * - *****************************************************************************/ -static void e1000_initialize_hardware_bits(struct e1000_hw *hw) -{ - uint32_t reg_ctrl, reg_ctrl_ext; - uint32_t reg_tarc0, reg_tarc1; - uint32_t reg_txdctl, reg_txdctl1; - - if (hw->mac_type < e1000_82571) - return; - - /* Settings common to all PCI-express silicon */ - - /* link autonegotiation/sync workarounds */ - reg_tarc0 = E1000_READ_REG(hw, TARC0); - reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27)); - - /* Enable not-done TX descriptor counting */ - reg_txdctl = E1000_READ_REG(hw, TXDCTL); - reg_txdctl |= E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); - - reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); - reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); - - switch (hw->mac_type) { - case e1000_82571: - case e1000_82572: - /* Clear PHY TX compatible mode bits */ - reg_tarc1 = E1000_READ_REG(hw, TARC1); - reg_tarc1 &= ~((1 << 30) | (1 << 29)); - - /* link autonegotiation/sync workarounds */ - reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23); - - /* TX ring control fixes */ - reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24); - - /* Multiple read bit is reversed polarity */ - if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case e1000_82573: - case e1000_82574: - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl_ext &= ~(1 << 23); - reg_ctrl_ext |= (1 << 22); - - /* TX byte count fix */ - reg_ctrl = E1000_READ_REG(hw, CTRL); - reg_ctrl &= ~(1 << 29); - - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - E1000_WRITE_REG(hw, CTRL, reg_ctrl); - break; - case e1000_80003es2lan: - /* improve small packet performace for fiber/serdes */ - if (e1000_media_fiber_serdes(hw)) - reg_tarc0 &= ~(1 << 20); - - /* Multiple read bit is reversed polarity */ - reg_tarc1 = E1000_READ_REG(hw, TARC1); - if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case e1000_ich8lan: - /* Reduce concurrent DMA requests to 3 from 4 */ - if ((hw->revision_id < 3) || - ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && - (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) - reg_tarc0 |= (1 << 29) | (1 << 28); - - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl_ext |= (1 << 22); - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - - /* workaround TX hang with TSO=on */ - reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23); - - /* Multiple read bit is reversed polarity */ - reg_tarc1 = E1000_READ_REG(hw, TARC1); - if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - /* workaround TX hang with TSO=on */ - reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case e1000_igb: - return; - default: - break; - } - - E1000_WRITE_REG(hw, TARC0, reg_tarc0); -} - -static int e1000_open(struct eth_device *edev) -{ - struct e1000_hw *hw = edev->priv; - uint32_t ctrl_ext; - int32_t ret_val; - uint32_t ctrl; - uint32_t reg_data; - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = e1000_setup_link(hw); - if (ret_val) - return ret_val; - - /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > e1000_82544) { - ctrl = E1000_READ_REG(hw, TXDCTL); - ctrl &= ~E1000_TXDCTL_WTHRESH; - ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL, ctrl); - } - - /* Set the receive descriptor write back policy */ - if (hw->mac_type >= e1000_82571) { - ctrl = E1000_READ_REG(hw, RXDCTL); - ctrl &= ~E1000_RXDCTL_WTHRESH; - ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB; - E1000_WRITE_REG(hw, RXDCTL, ctrl); - } - - switch (hw->mac_type) { - case e1000_80003es2lan: - /* Enable retransmit on late collisions */ - reg_data = E1000_READ_REG(hw, TCTL); - reg_data |= E1000_TCTL_RTLC; - E1000_WRITE_REG(hw, TCTL, reg_data); - - /* Configure Gigabit Carry Extend Padding */ - reg_data = E1000_READ_REG(hw, TCTL_EXT); - reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; - reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; - E1000_WRITE_REG(hw, TCTL_EXT, reg_data); - - /* Configure Transmit Inter-Packet Gap */ - reg_data = E1000_READ_REG(hw, TIPG); - reg_data &= ~E1000_TIPG_IPGT_MASK; - reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, reg_data); - - reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); - reg_data &= ~0x00100000; - E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); - /* Fall through */ - case e1000_82571: - case e1000_82572: - case e1000_ich8lan: - ctrl = E1000_READ_REG(hw, TXDCTL1); - ctrl &= ~E1000_TXDCTL_WTHRESH; - ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL1, ctrl); - break; - case e1000_82573: - case e1000_82574: - reg_data = E1000_READ_REG(hw, GCR); - reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - E1000_WRITE_REG(hw, GCR, reg_data); - case e1000_igb: - default: - break; - } - - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || - hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return 0; -} - -/****************************************************************************** - * Configures flow control and link settings. - * - * hw - Struct containing variables accessed by shared code - * - * Determines which flow control settings to use. Calls the apropriate media- - * specific link configuration function. Configures the flow control settings. - * Assuming the adapter has a valid link partner, a valid link should be - * established. Assumes the hardware has previously been reset and the - * transmitter and receiver are not enabled. - *****************************************************************************/ -static int e1000_setup_link(struct e1000_hw *hw) -{ - int32_t ret_val; - uint32_t ctrl_ext; - uint16_t eeprom_data; - - DEBUGFUNC(); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not have to set it up again. */ - if (e1000_check_phy_reset_block(hw)) - return E1000_SUCCESS; - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, - &eeprom_data) < 0) { - dev_dbg(hw->dev, "EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - switch (hw->mac_type) { - case e1000_ich8lan: - case e1000_82573: - case e1000_82574: - case e1000_igb: - hw->fc = e1000_fc_full; - break; - default: - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); - if (ret_val) { - dev_dbg(hw->dev, "EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = e1000_fc_none; - else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR) - hw->fc = e1000_fc_tx_pause; - else - hw->fc = e1000_fc_full; - break; - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if (hw->mac_type == e1000_82542_rev2_0) - hw->fc &= ~e1000_fc_tx_pause; - - hw->original_fc = hw->fc; - - dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before e1000_setup_pcs_link() - * or e1000_phy_setup() is called. - */ - if (hw->mac_type == e1000_82543) { - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - /* Call the necessary subroutine to configure the link. */ - if (e1000_media_fiber(hw)) - ret_val = e1000_setup_fiber_link(hw); - else - ret_val = e1000_setup_copper_link(hw); - - if (ret_val < 0) - return ret_val; - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n"); - - /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ - if (hw->mac_type != e1000_ich8lan) { - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - } - - E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if (hw->fc & e1000_fc_tx_pause) { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. - */ - E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE); - E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH); - } else { - E1000_WRITE_REG(hw, FCRTL, 0); - E1000_WRITE_REG(hw, FCRTH, 0); - } - - return ret_val; -} - -/****************************************************************************** - * Sets up link for a fiber based adapter - * - * hw - Struct containing variables accessed by shared code - * - * Manipulates Physical Coding Sublayer functions in order to configure - * link. Assumes the hardware has been previously reset and the transmitter - * and receiver are not enabled. - *****************************************************************************/ -static int e1000_setup_fiber_link(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t status; - uint32_t txcw = 0; - uint32_t i; - uint32_t signal; - - DEBUGFUNC(); - - /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal - */ - ctrl = E1000_READ_REG(hw, CTRL); - if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) - signal = E1000_CTRL_SWDPIN1; - else - signal = 0; - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - e1000_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case e1000_fc_none: - /* Flow control is completely disabled by a software over-ride. */ - txcw = E1000_TXCW_ANE | E1000_TXCW_FD; - break; - case e1000_fc_rx_pause: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; - break; - case e1000_fc_tx_pause: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR; - break; - case e1000_fc_full: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; - break; - default: - dev_dbg(hw->dev, "Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-neogtiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw); - - E1000_WRITE_REG(hw, TXCW, txcw); - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - mdelay(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - */ - if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { - dev_dbg(hw->dev, "Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - mdelay(10); - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == (LINK_UP_TIMEOUT / 10)) { - /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if we - * detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - return -E1000_ERR_NOLINK; - } else { - hw->autoneg_failed = 0; - dev_dbg(hw->dev, "Valid Link Found\n"); - } - } else { - dev_dbg(hw->dev, "No Signal Detected\n"); - return -E1000_ERR_NOLINK; - } - return 0; -} - -/****************************************************************************** -* Make sure we have a valid PHY and change PHY mode before link setup. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC(); - - ctrl = E1000_READ_REG(hw, CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if (hw->mac_type > e1000_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, CTRL, ctrl); - } else { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX - | E1000_CTRL_SLU); - E1000_WRITE_REG(hw, CTRL, ctrl); - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* Make sure we have a valid PHY */ - ret_val = e1000_detect_gig_phy(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error, did not detect valid phy.\n"); - return ret_val; - } - dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id); - - /* Set PHY to class A mode (if necessary) */ - ret_val = e1000_set_phy_mode(hw); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82545_rev_3) || - (hw->mac_type == e1000_82546_rev_3)) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - phy_data |= 0x00000008; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - } - - return E1000_SUCCESS; -} - -/***************************************************************************** - * - * This function sets the lplu state according to the active flag. When - * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisment - * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * hw: Struct containing variables accessed by shared code - * active - true to enable lplu false to disable lplu. - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - -static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw) -{ - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC(); - - /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used - * for Dx transitions and states */ - if (hw->mac_type == e1000_82541_rev_2 - || hw->mac_type == e1000_82547_rev_2) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, - &phy_data); - if (ret_val) - return ret_val; - } else if (hw->mac_type == e1000_ich8lan) { - /* MAC writes into PHY register based on the state transition - * and start auto-negotiation. SW driver can overwrite the - * settings in CSR PHY power control E1000_PHY_CTRL register. */ - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { - ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = e1000_write_phy_reg(hw, - IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/***************************************************************************** - * - * This function sets the lplu d0 state according to the active flag. When - * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisment - * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * hw: Struct containing variables accessed by shared code - * active - true to enable lplu false to disable lplu. - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - -static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw) -{ - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC(); - - if (hw->mac_type <= e1000_82547_rev_2) - return E1000_SUCCESS; - - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else if (hw->mac_type == e1000_igb) { - phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); - } else { - ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP02E1000_PM_D0_LPLU; - - ret_val = e1000_write_phy_reg(hw, - IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/******************************************************************** -* Copper link setup for e1000_phy_igp series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw) -{ - uint32_t led_ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC(); - - ret_val = e1000_phy_reset(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Resetting the PHY\n"); - return ret_val; - } - - /* Wait 15ms for MAC to configure PHY from eeprom settings */ - mdelay(15); - if (hw->mac_type != e1000_ich8lan) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ - if (hw->phy_type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = e1000_set_d3_lplu_state_off(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* disable lplu d0 during driver init */ - ret_val = e1000_set_d0_lplu_state_off(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Disabling LPLU D0\n"); - return ret_val; - } - - /* Configure mdi-mdix settings */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - /* Force MDI for earlier revs of the IGP PHY */ - phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX - | IGP01E1000_PSCR_FORCE_MDI_MDIX); - } else { - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - } - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - /* when autonegotiation advertisment is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - /* Set auto Master/Slave resolution process */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, - &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - -/***************************************************************************** - * This function checks the mode of the firmware. - * - * returns - true when the mode is IAMT or false. - ****************************************************************************/ -static bool e1000_check_mng_mode(struct e1000_hw *hw) -{ - uint32_t fwsm; - - DEBUGFUNC(); - - fwsm = E1000_READ_REG(hw, FWSM); - - if (hw->mac_type == e1000_ich8lan) { - if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return true; - } else if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return true; - - return false; -} - -static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) -{ - uint16_t swfw = E1000_SWFW_PHY0_SM; - uint32_t reg_val; - DEBUGFUNC(); - - if (e1000_is_second_port(hw)) - swfw = E1000_SWFW_PHY1_SM; - - if (e1000_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) - & E1000_KUMCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - udelay(2); - - return E1000_SUCCESS; -} - -static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) -{ - uint16_t swfw = E1000_SWFW_PHY0_SM; - uint32_t reg_val; - DEBUGFUNC(); - - if (e1000_is_second_port(hw)) - swfw = E1000_SWFW_PHY1_SM; - - if (e1000_swfw_sync_acquire(hw, swfw)) { - debug("%s[%i]\n", __func__, __LINE__); - return -E1000_ERR_SWFW_SYNC; - } - - /* Write register address */ - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & - E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - udelay(2); - - /* Read the data returned */ - reg_val = E1000_READ_REG(hw, KUMCTRLSTA); - *data = (uint16_t)reg_val; - - return E1000_SUCCESS; -} - -/******************************************************************** -* Copper link setup for e1000_phy_gg82563 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - uint32_t reg_data; - - DEBUGFUNC(); - - /* Enable CRS on TX for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, - GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ - phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; - - ret_val = e1000_write_phy_reg(hw, - GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Resetting the PHY\n"); - return ret_val; - } - - /* Bypass RX and TX FIFO's */ - ret_val = e1000_write_kmrn_reg(hw, - E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, - E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS - | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); - if (ret_val) - return ret_val; - - reg_data = E1000_READ_REG(hw, CTRL_EXT); - reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); - E1000_WRITE_REG(hw, CTRL_EXT, reg_data); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Do not init these registers when the HW is in IAMT mode, since the - * firmware will have already initialized them. We only initialize - * them if the HW is not in IAMT mode. - */ - if (e1000_check_mng_mode(hw) == false) { - /* Enable Electrical Idle on the PHY */ - phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; - ret_val = e1000_write_phy_reg(hw, - GG82563_PHY_PWR_MGMT_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, - GG82563_PHY_KMRN_MODE_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1000_write_phy_reg(hw, - GG82563_PHY_KMRN_MODE_CTRL, phy_data); - - if (ret_val) - return ret_val; - } - - /* Workaround: Disable padding in Kumeran interface in the MAC - * and in the PHY to avoid CRC errors. - */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data); - if (ret_val) - return ret_val; - phy_data |= GG82563_ICR_DIS_PADDING; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - -/******************************************************************** -* Copper link setup for e1000_phy_m88 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC(); - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1000_read_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK - | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X - | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - } - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/******************************************************************** -* Setup auto-negotiation and flow control advertisements, -* and then perform auto-negotiation. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC(); - - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* IFE phy only supports 10/100 */ - if (hw->phy_type == e1000_phy_ife) - hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; - - dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n"); - return ret_val; - } - dev_dbg(hw->dev, "Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Config the MAC and the PHY after link is up. -* 1) Set up the MAC to the current PHY speed/duplex -* if we are on 82543. If we -* are on newer silicon, we only need to configure -* collision distance in the Transmit Control Register. -* 2) Set up flow control on the MAC to that established with -* the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw) -{ - int32_t ret_val; - DEBUGFUNC(); - - if (hw->mac_type >= e1000_82544) { - e1000_config_collision_dist(hw); - } else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - dev_dbg(hw->dev, "Error Configuring Flow Control\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Detects which PHY is present and setup the speed and duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int e1000_setup_copper_link(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - uint16_t reg_data; - - DEBUGFUNC(); - - switch (hw->mac_type) { - case e1000_80003es2lan: - case e1000_ich8lan: - /* Set the mac to wait the maximum time between each - * iteration and increase the max iterations when - * polling the phy; this fixes erroneous timeouts at 10Mbps. */ - ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); - if (ret_val) - return ret_val; - - ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); - if (ret_val) - return ret_val; - - reg_data |= 0x3F; - - ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); - if (ret_val) - return ret_val; - default: - break; - } - - /* Check if it is a valid PHY and set PHY mode if necessary. */ - ret_val = e1000_copper_link_preconfig(hw); - if (ret_val) - return ret_val; - - switch (hw->mac_type) { - case e1000_80003es2lan: - /* Kumeran registers are written-only */ - reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; - reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; - ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, - reg_data); - if (ret_val) - return ret_val; - break; - default: - break; - } - - if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) { - ret_val = e1000_copper_link_igp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) { - ret_val = e1000_copper_link_mgp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_gg82563) { - ret_val = e1000_copper_link_ggp_setup(hw); - if (ret_val) - return ret_val; - } - - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for (i = 0; i < 10; i++) { - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - /* Config the MAC and PHY after link is up */ - ret_val = e1000_copper_link_postconfig(hw); - if (ret_val) - return ret_val; - - dev_dbg(hw->dev, "Valid link established!!!\n"); - return E1000_SUCCESS; - } - udelay(10); - } - - dev_dbg(hw->dev, "Unable to establish link!!!\n"); - return E1000_SUCCESS; -} - -/****************************************************************************** -* Configures PHY autoneg and flow control advertisement settings -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_autoneg_adv_reg; - uint16_t mii_1000t_ctrl_reg; - - DEBUGFUNC(); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (hw->phy_type != e1000_phy_ife) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, - &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } else - mii_1000t_ctrl_reg = 0; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { - dev_dbg(hw->dev, "Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { - dev_dbg(hw->dev, "Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { - dev_dbg(hw->dev, "Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { - dev_dbg(hw->dev, "Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { - pr_debug - ("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { - dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case e1000_fc_none: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - dev_dbg(hw->dev, "Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (hw->phy_type != e1000_phy_ife) { - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, - mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Sets the collision distance in the Transmit Control register -* -* hw - Struct containing variables accessed by shared code -* -* Link should have been established previously. Reads the speed and duplex -* information from the Device Status register. -******************************************************************************/ -static void e1000_config_collision_dist(struct e1000_hw *hw) -{ - uint32_t tctl, coll_dist; - - DEBUGFUNC(); - - if (hw->mac_type < e1000_82543) - coll_dist = E1000_COLLISION_DISTANCE_82542; - else - coll_dist = E1000_COLLISION_DISTANCE; - - tctl = E1000_READ_REG(hw, TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= coll_dist << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/****************************************************************************** -* Sets MAC speed and duplex settings to reflect the those in the PHY -* -* hw - Struct containing variables accessed by shared code -* mii_reg - data to write to the MII control register -* -* The contents of the PHY register containing the needed information need to -* be passed in. -******************************************************************************/ -static int e1000_config_mac_to_phy(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint16_t phy_data; - - DEBUGFUNC(); - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_ILOS); - ctrl |= (E1000_CTRL_SPD_SEL); - - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { - dev_dbg(hw->dev, "PHY Read Error\n"); - return -E1000_ERR_PHY; - } - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - return 0; -} - -/****************************************************************************** - * Forces the MAC's flow control settings. - * - * hw - Struct containing variables accessed by shared code - * - * Sets the TFCE and RFCE bits in the device control register to reflect - * the adapter settings. TFCE and RFCE need to be explicitly set by - * software when a Copper PHY is used because autonegotiation is managed - * by the PHY rather than the MAC. Software must also configure these - * bits when link is forced on a fiber connection. - *****************************************************************************/ -static int e1000_force_mac_fc(struct e1000_hw *hw) -{ - uint32_t ctrl; - - DEBUGFUNC(); - - /* Get the current configuration of the Device Control Register */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - dev_dbg(hw->dev, "Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == e1000_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - E1000_WRITE_REG(hw, CTRL, ctrl); - return 0; -} - -/****************************************************************************** - * Configures flow control settings after link is established - * - * hw - Struct containing variables accessed by shared code - * - * Should be called immediately after a valid link has been established. - * Forces MAC flow control settings if link was forced. When in MII/GMII mode - * and autonegotiation is enabled, the MAC flow control settings will be set - * based on the flow control negotiated by the PHY. In TBI mode, the TFCE - * and RFCE bits will be automaticaly set to the negotiated flow control mode. - *****************************************************************************/ -static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t mii_nway_adv_reg; - uint16_t mii_nway_lp_ability_reg; - uint16_t speed; - uint16_t duplex; - - DEBUGFUNC(); - - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { - dev_dbg(hw->dev, "PHY Read Error \n"); - return -E1000_ERR_PHY; - } - - if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { - dev_dbg(hw->dev, "PHY Read Error \n"); - return -E1000_ERR_PHY; - } - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n"); - return 0; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { - dev_dbg(hw->dev, "PHY Read Error\n"); - return -E1000_ERR_PHY; - } - - if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) { - dev_dbg(hw->dev, "PHY Read Error\n"); - return -E1000_ERR_PHY; - } - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | e1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->original_fc == e1000_fc_full) { - hw->fc = e1000_fc_full; - dev_dbg(hw->dev, "Flow Control = FULL.\r\n"); - } else { - hw->fc = e1000_fc_rx_pause; - dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) - { - hw->fc = e1000_fc_tx_pause; - dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) - { - hw->fc = e1000_fc_rx_pause; - dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if (hw->original_fc == e1000_fc_none || - hw->original_fc == e1000_fc_tx_pause) { - hw->fc = e1000_fc_none; - dev_dbg(hw->dev, "Flow Control = NONE.\r\n"); - } else { - hw->fc = e1000_fc_rx_pause; - dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); - } - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (duplex == HALF_DUPLEX) - hw->fc = e1000_fc_none; - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc(hw); - if (ret_val < 0) { - dev_dbg(hw->dev, "Error forcing flow control settings\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Configure the MAC-to-PHY interface for 10/100Mbps -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) -{ - int32_t ret_val = E1000_SUCCESS; - uint32_t tipg; - uint16_t reg_data; - - DEBUGFUNC(); - - reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; - ret_val = e1000_write_kmrn_reg(hw, - E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; - E1000_WRITE_REG(hw, TIPG, tipg); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - - if (ret_val) - return ret_val; - - if (duplex == HALF_DUPLEX) - reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; - else - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return ret_val; -} - -static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw) -{ - int32_t ret_val = E1000_SUCCESS; - uint16_t reg_data; - uint32_t tipg; - - DEBUGFUNC(); - - reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; - ret_val = e1000_write_kmrn_reg(hw, - E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, tipg); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - - if (ret_val) - return ret_val; - - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return ret_val; -} - -/****************************************************************************** - * Detects the current speed and duplex settings of the hardware. - * - * hw - Struct containing variables accessed by shared code - * speed - Speed of the connection - * duplex - Duplex setting of the connection - *****************************************************************************/ -static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, - uint16_t *duplex) -{ - uint32_t status; - int32_t ret_val; - - DEBUGFUNC(); - - if (hw->mac_type >= e1000_82543) { - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - dev_dbg(hw->dev, "1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - dev_dbg(hw->dev, "100 Mbs, "); - } else { - *speed = SPEED_10; - dev_dbg(hw->dev, "10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - dev_dbg(hw->dev, "Full Duplex\r\n"); - } else { - *duplex = HALF_DUPLEX; - dev_dbg(hw->dev, " Half Duplex\r\n"); - } - } else { - dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } - - if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) { - if (*speed == SPEED_1000) - ret_val = e1000_configure_kmrn_for_1000(hw); - else - ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); - if (ret_val) - return ret_val; - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Blocks until autoneg completes or times out (~4.5 seconds) -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int e1000_wait_autoneg(struct e1000_hw *hw) -{ - uint16_t i; - uint16_t phy_data; - - DEBUGFUNC(); - dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { - dev_dbg(hw->dev, "PHY Read Error\n"); - return -E1000_ERR_PHY; - } - if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { - dev_dbg(hw->dev, "PHY Read Error\n"); - return -E1000_ERR_PHY; - } - if (phy_data & MII_SR_AUTONEG_COMPLETE) { - dev_dbg(hw->dev, "Auto-Neg complete.\n"); - return 0; - } - mdelay(100); - } - dev_dbg(hw->dev, "Auto-Neg timedout.\n"); - return -E1000_ERR_TIMEOUT; -} - -/****************************************************************************** -* Raises the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) -{ - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 2 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(2); -} - -/****************************************************************************** -* Lowers the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) -{ - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 2 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(2); -} - -/****************************************************************************** -* Shifts data bits out to the PHY -* -* hw - Struct containing variables accessed by shared code -* data - Data to send out to the PHY -* count - Number of bits to shift out -* -* Bits are shifted out in MSB to LSB order. -******************************************************************************/ -static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, - uint16_t count) -{ - uint32_t ctrl; - uint32_t mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - udelay(2); - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - mask = mask >> 1; - } -} - -/****************************************************************************** -* Shifts data bits in from the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Bits are shifted in in MSB to LSB order. -******************************************************************************/ -static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint16_t data = 0; - uint8_t i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data = data << 1; - e1000_raise_mdi_clk(hw, &ctrl); - ctrl = E1000_READ_REG(hw, CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - e1000_lower_mdi_clk(hw, &ctrl); - } - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - return data; -} - -static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr) -{ - struct e1000_hw *hw = bus->priv; - uint32_t i; - uint32_t mdic = 0; - - if (phy_addr != 1) - return -EIO; - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { - udelay(10); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - dev_dbg(hw->dev, "MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - dev_dbg(hw->dev, "MDI Error\n"); - return -E1000_ERR_PHY; - } - return mdic; - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - return e1000_shift_in_mdi_bits(hw); - } -} - -/***************************************************************************** -* Reads the value from a PHY register -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to read -******************************************************************************/ -static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t *phy_data) -{ - int ret; - - ret = e1000_phy_read(&hw->miibus, 1, reg_addr); - if (ret < 0) - return ret; - - *phy_data = ret; - - return 0; -} - -static int e1000_phy_write(struct mii_bus *bus, int phy_addr, - int reg_addr, u16 phy_data) -{ - struct e1000_hw *hw = bus->priv; - uint32_t i; - uint32_t mdic = 0; - - if (phy_addr != 1) - return -EIO; - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, register address, and data intended - * for the PHY register in the MDI Control register. The MAC will take - * care of interfacing with the PHY to send the desired data. - */ - mdic = (((uint32_t) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { - udelay(10); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - dev_dbg(hw->dev, "MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * . - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (uint32_t) phy_data; - - e1000_shift_out_mdi_bits(hw, mdic, 32); - } - return 0; -} - -/****************************************************************************** - * Writes a value to a PHY register - * - * hw - Struct containing variables accessed by shared code - * reg_addr - address of the PHY register to write - * data - data to write to the PHY - ******************************************************************************/ -static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) -{ - return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data); -} - -/****************************************************************************** - * Checks if PHY reset is blocked due to SOL/IDER session, for example. - * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to - * the caller to figure out how to deal with it. - * - * hw - Struct containing variables accessed by shared code - * - * returns: - E1000_BLK_PHY_RESET - * E1000_SUCCESS - * - *****************************************************************************/ -static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw) -{ - if (hw->mac_type == e1000_ich8lan) { - if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY) - return E1000_SUCCESS; - else - return E1000_BLK_PHY_RESET; - } - - if (hw->mac_type > e1000_82547_rev_2) { - if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE) - return E1000_BLK_PHY_RESET; - else - return E1000_SUCCESS; - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * Checks if the PHY configuration is done - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_RESET if fail to reset MAC - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; - - DEBUGFUNC(); - - switch (hw->mac_type) { - default: - mdelay(10); - break; - - case e1000_80003es2lan: - /* Separate *_CFG_DONE_* bit for each port */ - if (e1000_is_second_port(hw)) - cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; - /* Fall Through */ - - case e1000_82571: - case e1000_82572: - case e1000_igb: - while (timeout) { - if (hw->mac_type == e1000_igb) { - if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) - break; - } else { - if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) - break; - } - mdelay(1); - timeout--; - } - if (!timeout) { - dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - break; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Returns the PHY to the power-on reset state -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_phy_hw_reset(struct e1000_hw *hw) -{ - uint16_t swfw = E1000_SWFW_PHY0_SM; - uint32_t ctrl, ctrl_ext; - uint32_t led_ctrl; - int32_t ret_val; - - DEBUGFUNC(); - - /* In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. */ - ret_val = e1000_check_phy_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - - dev_dbg(hw->dev, "Resetting Phy...\n"); - - if (hw->mac_type > e1000_82543) { - if (e1000_is_second_port(hw)) - swfw = E1000_SWFW_PHY1_SM; - - if (e1000_swfw_sync_acquire(hw, swfw)) { - dev_dbg(hw->dev, "Unable to acquire swfw sync\n"); - return -E1000_ERR_SWFW_SYNC; - } - - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - */ - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - udelay(100); - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - if (hw->mac_type >= e1000_82571) - mdelay(10); - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - mdelay(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - udelay(150); - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* Wait for FW to finish PHY configuration. */ - return e1000_get_phy_cfg_done(hw); -} - -/****************************************************************************** - * IGP phy init script - initializes the GbE PHY - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void e1000_phy_init_script(struct e1000_hw *hw) -{ - uint32_t ret_val; - uint16_t phy_saved_data; - - DEBUGFUNC(); - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - break; - default: - return; - } - - mdelay(20); - - /* Save off the current value of register 0x2F5B to be - * restored at the end of this routine. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - mdelay(20); - - e1000_write_phy_reg(hw, 0x0000, 0x0140); - - mdelay(5); - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - e1000_write_phy_reg(hw, 0x1F95, 0x0001); - - e1000_write_phy_reg(hw, 0x1F71, 0xBD21); - - e1000_write_phy_reg(hw, 0x1F79, 0x0018); - - e1000_write_phy_reg(hw, 0x1F30, 0x1600); - - e1000_write_phy_reg(hw, 0x1F31, 0x0014); - - e1000_write_phy_reg(hw, 0x1F32, 0x161C); - - e1000_write_phy_reg(hw, 0x1F94, 0x0003); - - e1000_write_phy_reg(hw, 0x1F96, 0x003F); - - e1000_write_phy_reg(hw, 0x2010, 0x0008); - break; - - case e1000_82541_rev_2: - case e1000_82547_rev_2: - e1000_write_phy_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - e1000_write_phy_reg(hw, 0x0000, 0x3300); - - mdelay(20); - - /* Now enable the transmitter */ - if (!ret_val) - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac_type == e1000_82547) { - uint16_t fused, fine, coarse; - - /* Move to analog registers page */ - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if (coarse > - IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= - IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse - == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } -} - -/****************************************************************************** -* Resets the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Sets bit 15 of the MII Control register -******************************************************************************/ -static int32_t e1000_phy_reset(struct e1000_hw *hw) -{ - uint16_t phy_data; - int ret; - - DEBUGFUNC(); - - /* - * In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. - */ - if (e1000_check_phy_reset_block(hw)) - return E1000_SUCCESS; - - switch (hw->phy_type) { - case e1000_phy_igp: - case e1000_phy_igp_2: - case e1000_phy_igp_3: - case e1000_phy_ife: - case e1000_phy_igb: - ret = e1000_phy_hw_reset(hw); - if (ret) - return ret; - break; - default: - ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret) - return ret; - - phy_data |= MII_CR_RESET; - ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret) - return ret; - - udelay(1); - break; - } - - if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) - e1000_phy_init_script(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Probes the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t e1000_detect_gig_phy(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_id_high, phy_id_low; - e1000_phy_type phy_type = e1000_phy_undefined; - - DEBUGFUNC(); - - /* The 82571 firmware may still be configuring the PHY. In this - * case, we cannot access the PHY until the configuration is done. So - * we explicitly set the PHY values. */ - if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { - hw->phy_id = IGP01E1000_I_PHY_ID; - hw->phy_type = e1000_phy_igp_2; - return E1000_SUCCESS; - } - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) - return ret_val; - - hw->phy_id = (uint32_t) (phy_id_high << 16); - udelay(20); - ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) - return ret_val; - - hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); - hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - - switch (hw->mac_type) { - case e1000_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) - phy_type = e1000_phy_m88; - break; - case e1000_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) - phy_type = e1000_phy_m88; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) - phy_type = e1000_phy_m88; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) - phy_type = e1000_phy_igp; - - break; - case e1000_82573: - if (hw->phy_id == M88E1111_I_PHY_ID) - phy_type = e1000_phy_m88; - break; - case e1000_82574: - if (hw->phy_id == BME1000_E_PHY_ID) - phy_type = e1000_phy_bm; - break; - case e1000_80003es2lan: - if (hw->phy_id == GG82563_E_PHY_ID) - phy_type = e1000_phy_gg82563; - break; - case e1000_ich8lan: - if (hw->phy_id == IGP03E1000_E_PHY_ID) - phy_type = e1000_phy_igp_3; - if (hw->phy_id == IFE_E_PHY_ID) - phy_type = e1000_phy_ife; - if (hw->phy_id == IFE_PLUS_E_PHY_ID) - phy_type = e1000_phy_ife; - if (hw->phy_id == IFE_C_E_PHY_ID) - phy_type = e1000_phy_ife; - break; - case e1000_igb: - if (hw->phy_id == I210_I_PHY_ID) - phy_type = e1000_phy_igb; - if (hw->phy_id == I350_I_PHY_ID) - phy_type = e1000_phy_igb; - break; - default: - dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - - if (!phy_type == e1000_phy_undefined) { - dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id); - return -EINVAL; - } - - hw->phy_type = phy_type; - - return 0; -} - -/***************************************************************************** - * Set media type and TBI compatibility. - * - * hw - Struct containing variables accessed by shared code - * **************************************************************************/ -static void e1000_set_media_type(struct e1000_hw *hw) -{ - DEBUGFUNC(); - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->media_type = e1000_media_type_internal_serdes; - return; - default: - break; - } - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->media_type = e1000_media_type_fiber; - return; - case e1000_ich8lan: - case e1000_82573: - case e1000_82574: - case e1000_igb: - /* The STATUS_TBIMODE bit is reserved or reused - * for the this device. - */ - hw->media_type = e1000_media_type_copper; - return; - default: - break; - } - - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE) - hw->media_type = e1000_media_type_fiber; - else - hw->media_type = e1000_media_type_copper; -} - -/** - * e1000_sw_init - Initialize general software structures (struct e1000_adapter) - * - * e1000_sw_init initializes the Adapter private data structure. - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - **/ - -static int e1000_sw_init(struct eth_device *edev) -{ - struct e1000_hw *hw = edev->priv; - int result; - - /* PCI config space info */ - pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); - pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); - pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); - pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); - - /* identify the MAC */ - result = e1000_set_mac_type(hw); - if (result) { - dev_err(&hw->edev.dev, "Unknown MAC Type\n"); - return result; - } - - return E1000_SUCCESS; -} - -static void fill_rx(struct e1000_hw *hw) -{ - volatile struct e1000_rx_desc *rd; - volatile u32 *bla; - int i; - - hw->rx_last = hw->rx_tail; - rd = hw->rx_base + hw->rx_tail; - hw->rx_tail = (hw->rx_tail + 1) % 8; - - bla = (void *)rd; - for (i = 0; i < 4; i++) - *bla++ = 0; - - rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet); - - E1000_WRITE_REG(hw, RDT, hw->rx_tail); -} - -/** - * e1000_configure_tx - Configure 8254x Transmit Unit after Reset - * @adapter: board private structure - * - * Configure the Tx unit of the MAC after a reset. - **/ - -static void e1000_configure_tx(struct e1000_hw *hw) -{ - unsigned long tctl; - unsigned long tipg, tarc; - uint32_t ipgr1, ipgr2; - - E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base); - E1000_WRITE_REG(hw, TDBAH, 0); - - E1000_WRITE_REG(hw, TDLEN, 128); - - /* Setup the HW Tx Head and Tail descriptor pointers */ - E1000_WRITE_REG(hw, TDH, 0); - E1000_WRITE_REG(hw, TDT, 0); - hw->tx_tail = 0; - - /* Set the default values for the Tx Inter Packet Gap timer */ - if (hw->mac_type <= e1000_82547_rev_2 && - (hw->media_type == e1000_media_type_fiber || - hw->media_type == e1000_media_type_internal_serdes)) - tipg = DEFAULT_82543_TIPG_IPGT_FIBER; - else - tipg = DEFAULT_82543_TIPG_IPGT_COPPER; - - /* Set the default values for the Tx Inter Packet Gap timer */ - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - tipg = DEFAULT_82542_TIPG_IPGT; - ipgr1 = DEFAULT_82542_TIPG_IPGR1; - ipgr2 = DEFAULT_82542_TIPG_IPGR2; - break; - case e1000_80003es2lan: - ipgr1 = DEFAULT_82543_TIPG_IPGR1; - ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; - break; - default: - ipgr1 = DEFAULT_82543_TIPG_IPGR1; - ipgr2 = DEFAULT_82543_TIPG_IPGR2; - break; - } - tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; - tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; - E1000_WRITE_REG(hw, TIPG, tipg); - /* Program the Transmit Control Register */ - tctl = E1000_READ_REG(hw, TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); - - if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { - tarc = E1000_READ_REG(hw, TARC0); - /* set the speed mode bit, we'll clear it if we're not at - * gigabit link later */ - /* git bit can be set to 1*/ - } else if (hw->mac_type == e1000_80003es2lan) { - tarc = E1000_READ_REG(hw, TARC0); - tarc |= 1; - E1000_WRITE_REG(hw, TARC0, tarc); - tarc = E1000_READ_REG(hw, TARC1); - tarc |= 1; - E1000_WRITE_REG(hw, TARC1, tarc); - } - - - e1000_config_collision_dist(hw); - /* Setup Transmit Descriptor Settings for eop descriptor */ - hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; - - /* Need to set up RS bit */ - if (hw->mac_type < e1000_82543) - hw->txd_cmd |= E1000_TXD_CMD_RPS; - else - hw->txd_cmd |= E1000_TXD_CMD_RS; - - - if (hw->mac_type == e1000_igb) { - uint32_t reg_txdctl; - - E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); - - reg_txdctl = E1000_READ_REG(hw, TXDCTL); - reg_txdctl |= 1 << 25; - E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); - mdelay(20); - } - - E1000_WRITE_REG(hw, TCTL, tctl); -} - -/** - * e1000_setup_rctl - configure the receive control register - * @adapter: Board private structure - **/ -static void e1000_setup_rctl(struct e1000_hw *hw) -{ - uint32_t rctl; - - rctl = E1000_READ_REG(hw, RCTL); - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO - | E1000_RCTL_RDMTS_HALF; /* | - (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ - - rctl &= ~E1000_RCTL_SBP; - - rctl &= ~(E1000_RCTL_SZ_4096); - rctl |= E1000_RCTL_SZ_2048; - rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); - E1000_WRITE_REG(hw, RCTL, rctl); -} - -/** - * e1000_configure_rx - Configure 8254x Receive Unit after Reset - * @adapter: board private structure - * - * Configure the Rx unit of the MAC after a reset. - **/ -static void e1000_configure_rx(struct e1000_hw *hw) -{ - unsigned long rctl, ctrl_ext; - - hw->rx_tail = 0; - /* make sure receives are disabled while setting up the descriptors */ - rctl = E1000_READ_REG(hw, RCTL); - E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); - if (hw->mac_type >= e1000_82540) { - /* Set the interrupt throttling rate. Value is calculated - * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ -#define MAX_INTS_PER_SEC 8000 -#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) - E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); - } - - if (hw->mac_type >= e1000_82571) { - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - /* Reset delay timers after every interrupt */ - ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - /* Setup the Base and Length of the Rx Descriptor Ring */ - E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base); - E1000_WRITE_REG(hw, RDBAH, 0); - - E1000_WRITE_REG(hw, RDLEN, 128); - - /* Setup the HW Rx Head and Tail Descriptor Pointers */ - E1000_WRITE_REG(hw, RDH, 0); - E1000_WRITE_REG(hw, RDT, 0); - /* Enable Receives */ - - if (hw->mac_type == e1000_igb) { - uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); - reg_rxdctl |= 1 << 25; - E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); - mdelay(20); - } - - E1000_WRITE_REG(hw, RCTL, rctl); - - fill_rx(hw); -} - -static int e1000_poll(struct eth_device *edev) -{ - struct e1000_hw *hw = edev->priv; - volatile struct e1000_rx_desc *rd; - uint32_t len; - - rd = hw->rx_base + hw->rx_last; - - if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) - return 0; - - len = le32_to_cpu(rd->length); - - dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE); - - net_receive(edev, (uchar *)hw->packet, len); - fill_rx(hw); - return 1; -} - -static int e1000_transmit(struct eth_device *edev, void *txpacket, int length) -{ - void *nv_packet = (void *)txpacket; - struct e1000_hw *hw = edev->priv; - volatile struct e1000_tx_desc *txp; - uint64_t to; - - txp = hw->tx_base + hw->tx_tail; - hw->tx_tail = (hw->tx_tail + 1) % 8; - - txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); - txp->lower.data = cpu_to_le32(hw->txd_cmd | length); - txp->upper.data = 0; - - dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE); - - E1000_WRITE_REG(hw, TDT, hw->tx_tail); - - E1000_WRITE_FLUSH(hw); - - to = get_time_ns(); - while (1) { - if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) - break; - if (is_timeout(to, MSECOND)) { - dev_dbg(hw->dev, "e1000: tx timeout\n"); - return -ETIMEDOUT; - } - } - - return 0; -} - -static void e1000_disable(struct eth_device *edev) -{ - struct e1000_hw *hw = edev->priv; - - /* Turn off the ethernet interface */ - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_REG(hw, TCTL, 0); - - /* Clear the transmit ring */ - E1000_WRITE_REG(hw, TDH, 0); - E1000_WRITE_REG(hw, TDT, 0); - - /* Clear the receive ring */ - E1000_WRITE_REG(hw, RDH, 0); - E1000_WRITE_REG(hw, RDT, 0); - - mdelay(10); -} - -static int e1000_init(struct eth_device *edev) -{ - struct e1000_hw *hw = edev->priv; - uint32_t i; - uint32_t mta_size; - uint32_t reg_data; - - DEBUGFUNC(); - - if (hw->mac_type >= e1000_82544) - E1000_WRITE_REG(hw, WUC, 0); - - /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ - if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) || - ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && - (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~0x80000000; - E1000_WRITE_REG(hw, STATUS, reg_data); - } - - /* Set the media type and TBI compatibility */ - e1000_set_media_type(hw); - - /* Must be called after e1000_set_media_type - * because media_type is used */ - e1000_initialize_hardware_bits(hw); - - /* Disabling VLAN filtering. */ - /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ - if (hw->mac_type != e1000_ich8lan) { - if (hw->mac_type < e1000_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - e1000_clear_vfta(hw); - } - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); - pci_write_config_word(hw->pdev, PCI_COMMAND, - hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); - E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(hw); - mdelay(5); - } - - for (i = 1; i < E1000_RAR_ENTRIES; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - } - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == e1000_82542_rev2_0) { - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_FLUSH(hw); - mdelay(1); - pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); - } - - /* Zero out the Multicast HASH table */ - mta_size = E1000_MC_TBL_SIZE; - if (hw->mac_type == e1000_ich8lan) - mta_size = E1000_MC_TBL_SIZE_ICH8LAN; - - for (i = 0; i < mta_size; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occuring when accessing our register space */ - E1000_WRITE_FLUSH(hw); - } - - /* More time needed for PHY to initialize */ - if (hw->mac_type == e1000_ich8lan) - mdelay(15); - if (hw->mac_type == e1000_igb) - mdelay(15); - - e1000_configure_tx(hw); - e1000_configure_rx(hw); - e1000_setup_rctl(hw); - - return 0; -} - -static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id) -{ - struct e1000_hw *hw; - struct eth_device *edev; - int ret; - - pci_enable_device(pdev); - pci_set_master(pdev); - - hw = xzalloc(sizeof(*hw)); - - hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN); - hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN); - hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN); - - edev = &hw->edev; - - hw->pdev = pdev; - hw->dev = &pdev->dev; - pdev->dev.priv = hw; - edev->priv = hw; - - hw->hw_addr = pci_iomap(pdev, 0); - - /* MAC and Phy settings */ - if (e1000_sw_init(edev) < 0) { - dev_err(&pdev->dev, "Software init failed\n"); - return -EINVAL; - } - - if (e1000_check_phy_reset_block(hw)) - dev_err(&pdev->dev, "PHY Reset is blocked!\n"); - - /* Basic init was OK, reset the hardware and allow SPI access */ - e1000_reset_hw(hw); - - /* Validate the EEPROM and get chipset information */ - if (e1000_init_eeprom_params(hw)) { - dev_err(&pdev->dev, "EEPROM is invalid!\n"); - return -EINVAL; - } - if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && - e1000_validate_eeprom_checksum(hw)) - return -EINVAL; - - e1000_get_ethaddr(edev, edev->ethaddr); - - /* Set up the function pointers and register the device */ - edev->init = e1000_init; - edev->recv = e1000_poll; - edev->send = e1000_transmit; - edev->halt = e1000_disable; - edev->open = e1000_open; - edev->get_ethaddr = e1000_get_ethaddr; - edev->set_ethaddr = e1000_set_ethaddr; - - hw->miibus.read = e1000_phy_read; - hw->miibus.write = e1000_phy_write; - hw->miibus.priv = hw; - hw->miibus.parent = &edev->dev; - - ret = eth_register(edev); - if (ret) - return ret; - - /* - * The e1000 driver does its own phy handling, but registering - * the phy allows to show the phy registers for debugging purposes. - */ - ret = mdiobus_register(&hw->miibus); - if (ret) - return ret; - - return 0; -} - -static void e1000_remove(struct pci_dev *pdev) -{ - struct e1000_hw *hw = pdev->dev.priv; - - e1000_disable(&hw->edev); -} - -static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), }, - /* E1000 PCIe card */ - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), }, - { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), }, - { /* sentinel */ } -}; - -static struct pci_driver e1000_eth_driver = { - .name = "e1000", - .id_table = e1000_pci_tbl, - .probe = e1000_probe, - .remove = e1000_remove, -}; - -static int e1000_driver_init(void) -{ - return pci_register_driver(&e1000_eth_driver); -} -device_initcall(e1000_driver_init); diff --git a/drivers/net/e1000.h b/drivers/net/e1000.h deleted file mode 100644 index 9fb0cb7..0000000 --- a/drivers/net/e1000.h +++ /dev/null @@ -1,2093 +0,0 @@ -/******************************************************************************* - - - Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. - Copyright 2011 Freescale Semiconductor, Inc. - - * SPDX-License-Identifier: GPL-2.0+ - - Contact Information: - Linux NICS - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* e1000_hw.h - * Structures, enums, and macros for the MAC - */ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#ifdef E1000_DEBUG -#define DEBUGFUNC() printf("%s\n", __func__); -#else -#define DEBUGFUNC() do { } while (0) -#endif - -/* I/O wrapper functions */ -#define E1000_WRITE_REG(a, reg, value) \ - writel((value), ((a)->hw_addr + E1000_##reg)) -#define E1000_READ_REG(a, reg) \ - readl((a)->hw_addr + E1000_##reg) -#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ - writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) -#define E1000_READ_REG_ARRAY(a, reg, offset) \ - readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) -#define E1000_WRITE_FLUSH(a) \ - do { E1000_READ_REG(a, STATUS); } while (0) - -/* Enumerated types specific to the e1000 hardware */ -/* Media Access Controlers */ -typedef enum { - e1000_undefined = 0, - e1000_82542_rev2_0, - e1000_82542_rev2_1, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_82571, - e1000_82572, - e1000_82573, - e1000_82574, - e1000_80003es2lan, - e1000_ich8lan, - e1000_igb, - e1000_num_macs -} e1000_mac_type; - -/* Media Types */ -typedef enum { - e1000_media_type_copper = 0, - e1000_media_type_fiber = 1, - e1000_media_type_internal_serdes = 2, - e1000_num_media_types -} e1000_media_type; - -typedef enum { - e1000_eeprom_uninitialized = 0, - e1000_eeprom_spi, - e1000_eeprom_microwire, - e1000_eeprom_flash, - e1000_eeprom_ich8, - e1000_eeprom_none, /* No NVM support */ - e1000_eeprom_invm, - e1000_num_eeprom_types -} e1000_eeprom_type; - -/* Flow Control Settings */ -typedef enum { - e1000_fc_none = 0, - e1000_fc_rx_pause = 1, - e1000_fc_tx_pause = 2, - e1000_fc_full = 3, - e1000_fc_default = 0xFF -} e1000_fc_type; - -typedef enum { - e1000_phy_m88 = 0, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_igb, - e1000_phy_bm, - e1000_phy_82580, - e1000_phy_undefined = 0xFF -} e1000_phy_type; - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_EEPROM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_TYPE 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_NOLINK 7 -#define E1000_ERR_TIMEOUT 8 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 - -/* PCI Device IDs */ -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER_LOM 0x1014 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82541GI_LF 0x107C -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82546GB_PCIE 0x108A -#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 -#define E1000_DEV_ID_82547EI 0x1019 -#define E1000_DEV_ID_82547EI_MOBILE 0x101A -#define E1000_DEV_ID_82571EB_COPPER 0x105E -#define E1000_DEV_ID_82571EB_FIBER 0x105F -#define E1000_DEV_ID_82571EB_SERDES 0x1060 -#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 -#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 -#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 -#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC -#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 -#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA -#define E1000_DEV_ID_82572EI_COPPER 0x107D -#define E1000_DEV_ID_82572EI_FIBER 0x107E -#define E1000_DEV_ID_82572EI_SERDES 0x107F -#define E1000_DEV_ID_82572EI 0x10B9 -#define E1000_DEV_ID_82573E 0x108B -#define E1000_DEV_ID_82573E_IAMT 0x108C -#define E1000_DEV_ID_82573L 0x109A -#define E1000_DEV_ID_82574L 0x10D3 -#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 -#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 -#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 -#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA -#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB - -#define E1000_DEV_ID_I350_COPPER 0x1521 -#define E1000_DEV_ID_I210_UNPROGRAMMED 0x1531 -#define E1000_DEV_ID_I211_UNPROGRAMMED 0x1532 -#define E1000_DEV_ID_I210_COPPER 0x1533 -#define E1000_DEV_ID_I210_SERDES 0x1536 -#define E1000_DEV_ID_I210_1000BASEKX 0x1537 -#define E1000_DEV_ID_I210_EXTPHY 0x1538 -#define E1000_DEV_ID_I211_COPPER 0x1539 -#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157b -#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157c - -#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 -#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A -#define E1000_DEV_ID_ICH8_IGP_C 0x104B -#define E1000_DEV_ID_ICH8_IFE 0x104C -#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 -#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 -#define E1000_DEV_ID_ICH8_IGP_M 0x104D - -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, - Control and Address */ -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special - control register */ -#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive false - Carrier Counter */ -#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet - Counter */ -#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error - Frame Counter */ -#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error - Counter */ -#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive - Premature End Of Frame - Error Counter */ -#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of - Frame Error Counter */ -#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber - Detect Counter */ -#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and - Status */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and - LED configuration */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ -#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control - (HWI) */ - -#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto - reduced power down */ -#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power - state of 100BASE-TX */ -#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power - state of 10BASE-T */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T - polarity */ -#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY - address */ -#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed - result 1=100Mbs, 0=10Mbs */ -#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation - duplex result 1=Full, 0=Half */ -#define IFE_PESC_POLARITY_REVERSED_SHIFT 8 - -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down - disabled */ -#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, - 0=Normal */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity - Disabled, 0=Enabled */ -#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, - 0=Normal Jabber Operation */ -#define IFE_PSC_FORCE_POLARITY_SHIFT 5 -#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 - -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X - feature, default 0=disabled */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, - 0=force MDI */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm - is completed */ -#define IFE_PMC_MDIX_MODE_SHIFT 6 -#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ - -#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI - feature */ -#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, - 0=failed */ -#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses - on the wire */ -#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ -#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ -#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication - type of problem on the line */ -#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to - the cable problem, in 80cm granularity */ -#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ -#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 - off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -#define NODE_ADDRESS_SIZE 6 - -#define E1000_82542_2_0_REV_ID 2 -#define E1000_82542_2_1_REV_ID 3 -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -/* The number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. We - * reserve one of these spots for our directed address, allowing us room for - * E1000_RAR_ENTRIES - 1 multicast addresses. - */ -#define E1000_RAR_ENTRIES 16 - -#define MIN_NUMBER_OF_DESCRIPTORS 8 -#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 - -/* Receive Descriptor */ -struct e1000_rx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - uint16_t length; /* Length of data DMAed into data buffer */ - uint16_t csum; /* Packet checksum */ - uint8_t status; /* Descriptor status */ - uint8_t errors; /* Descriptor Errors */ - uint16_t special; -}; - -/* Receive Decriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Transmit Descriptor */ -struct e1000_tx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - union { - uint32_t data; - struct { - uint16_t length; /* Data buffer length */ - uint8_t cso; /* Checksum offset */ - uint8_t cmd; /* Descriptor control */ - } flags; - } lower; - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t css; /* Checksum start */ - uint16_t special; - } fields; - } upper; -}; - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - -/* Filters */ -#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ -#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Register Set. (82543, 82544) - * - * Registers are defined to be 32 bits and should be accessed as 32 bit values. - * These registers are physically located on the NIC, but are mapped into the - * host memory address space. - * - * RW - register is both readable and writable - * RO - register is read only - * WO - register is write only - * R/clr - register is read only and is cleared when read - * A - register array - */ -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_I210_EECD 0x12010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_I210_EERD 0x12014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_I210_IAM 0x000E0 /* Interrupt Ack Auto Mask - RW */ -#define E1000_RCTL 0x00100 /* RX Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ -#define E1000_TCTL 0x00400 /* TX Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ -#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define E1000_I210_PHY_CTRL 0x00E14 /* PHY Control Register in CSR */ -#define FEXTNVM_SW_CONFIG 0x0001 -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_I210_EEMNGCTL 0x12030 /* MNG EEprom Control */ -#define E1000_FLASH_UPDATES 1000 -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_I210_EEWR 0x12018 /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ -#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ -#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ -#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ -#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ -#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ -#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ -#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ -#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ -#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ -#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ -#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ -#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ -#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ -#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ -#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ -#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ -#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ -#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ -#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ -#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ -#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ -#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ -#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ -#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ -#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -/* Register Set (82542) - * - * Some of the 82542 registers are located at different offsets than they are - * in more current versions of the 8254x. Despite the difference in location, - * the registers function in the same manner. - */ -#define E1000_82542_CTRL E1000_CTRL -#define E1000_82542_STATUS E1000_STATUS -#define E1000_82542_EECD E1000_EECD -#define E1000_82542_EERD E1000_EERD -#define E1000_82542_CTRL_EXT E1000_CTRL_EXT -#define E1000_82542_MDIC E1000_MDIC -#define E1000_82542_FCAL E1000_FCAL -#define E1000_82542_FCAH E1000_FCAH -#define E1000_82542_FCT E1000_FCT -#define E1000_82542_VET E1000_VET -#define E1000_82542_RA 0x00040 -#define E1000_82542_ICR E1000_ICR -#define E1000_82542_ITR E1000_ITR -#define E1000_82542_ICS E1000_ICS -#define E1000_82542_IMS E1000_IMS -#define E1000_82542_IMC E1000_IMC -#define E1000_82542_RCTL E1000_RCTL -#define E1000_82542_RDTR 0x00108 -#define E1000_82542_RDBAL 0x00110 -#define E1000_82542_RDBAH 0x00114 -#define E1000_82542_RDLEN 0x00118 -#define E1000_82542_RDH 0x00120 -#define E1000_82542_RDT 0x00128 -#define E1000_82542_FCRTH 0x00160 -#define E1000_82542_FCRTL 0x00168 -#define E1000_82542_FCTTV E1000_FCTTV -#define E1000_82542_TXCW E1000_TXCW -#define E1000_82542_RXCW E1000_RXCW -#define E1000_82542_MTA 0x00200 -#define E1000_82542_TCTL E1000_TCTL -#define E1000_82542_TIPG E1000_TIPG -#define E1000_82542_TDBAL 0x00420 -#define E1000_82542_TDBAH 0x00424 -#define E1000_82542_TDLEN 0x00428 -#define E1000_82542_TDH 0x00430 -#define E1000_82542_TDT 0x00438 -#define E1000_82542_TIDV 0x00440 -#define E1000_82542_TBT E1000_TBT -#define E1000_82542_AIT E1000_AIT -#define E1000_82542_VFTA 0x00600 -#define E1000_82542_LEDCTL E1000_LEDCTL -#define E1000_82542_PBA E1000_PBA -#define E1000_82542_RXDCTL E1000_RXDCTL -#define E1000_82542_RADV E1000_RADV -#define E1000_82542_RSRPD E1000_RSRPD -#define E1000_82542_TXDMAC E1000_TXDMAC -#define E1000_82542_TXDCTL E1000_TXDCTL -#define E1000_82542_TADV E1000_TADV -#define E1000_82542_TSPMT E1000_TSPMT -#define E1000_82542_CRCERRS E1000_CRCERRS -#define E1000_82542_ALGNERRC E1000_ALGNERRC -#define E1000_82542_SYMERRS E1000_SYMERRS -#define E1000_82542_RXERRC E1000_RXERRC -#define E1000_82542_MPC E1000_MPC -#define E1000_82542_SCC E1000_SCC -#define E1000_82542_ECOL E1000_ECOL -#define E1000_82542_MCC E1000_MCC -#define E1000_82542_LATECOL E1000_LATECOL -#define E1000_82542_COLC E1000_COLC -#define E1000_82542_DC E1000_DC -#define E1000_82542_TNCRS E1000_TNCRS -#define E1000_82542_SEC E1000_SEC -#define E1000_82542_CEXTERR E1000_CEXTERR -#define E1000_82542_RLEC E1000_RLEC -#define E1000_82542_XONRXC E1000_XONRXC -#define E1000_82542_XONTXC E1000_XONTXC -#define E1000_82542_XOFFRXC E1000_XOFFRXC -#define E1000_82542_XOFFTXC E1000_XOFFTXC -#define E1000_82542_FCRUC E1000_FCRUC -#define E1000_82542_PRC64 E1000_PRC64 -#define E1000_82542_PRC127 E1000_PRC127 -#define E1000_82542_PRC255 E1000_PRC255 -#define E1000_82542_PRC511 E1000_PRC511 -#define E1000_82542_PRC1023 E1000_PRC1023 -#define E1000_82542_PRC1522 E1000_PRC1522 -#define E1000_82542_GPRC E1000_GPRC -#define E1000_82542_BPRC E1000_BPRC -#define E1000_82542_MPRC E1000_MPRC -#define E1000_82542_GPTC E1000_GPTC -#define E1000_82542_GORCL E1000_GORCL -#define E1000_82542_GORCH E1000_GORCH -#define E1000_82542_GOTCL E1000_GOTCL -#define E1000_82542_GOTCH E1000_GOTCH -#define E1000_82542_RNBC E1000_RNBC -#define E1000_82542_RUC E1000_RUC -#define E1000_82542_RFC E1000_RFC -#define E1000_82542_ROC E1000_ROC -#define E1000_82542_RJC E1000_RJC -#define E1000_82542_MGTPRC E1000_MGTPRC -#define E1000_82542_MGTPDC E1000_MGTPDC -#define E1000_82542_MGTPTC E1000_MGTPTC -#define E1000_82542_TORL E1000_TORL -#define E1000_82542_TORH E1000_TORH -#define E1000_82542_TOTL E1000_TOTL -#define E1000_82542_TOTH E1000_TOTH -#define E1000_82542_TPR E1000_TPR -#define E1000_82542_TPT E1000_TPT -#define E1000_82542_PTC64 E1000_PTC64 -#define E1000_82542_PTC127 E1000_PTC127 -#define E1000_82542_PTC255 E1000_PTC255 -#define E1000_82542_PTC511 E1000_PTC511 -#define E1000_82542_PTC1023 E1000_PTC1023 -#define E1000_82542_PTC1522 E1000_PTC1522 -#define E1000_82542_MPTC E1000_MPTC -#define E1000_82542_BPTC E1000_BPTC -#define E1000_82542_TSCTC E1000_TSCTC -#define E1000_82542_TSCTFC E1000_TSCTFC -#define E1000_82542_RXCSUM E1000_RXCSUM -#define E1000_82542_WUC E1000_WUC -#define E1000_82542_WUFC E1000_WUFC -#define E1000_82542_WUS E1000_WUS -#define E1000_82542_MANC E1000_MANC -#define E1000_82542_IPAV E1000_IPAV -#define E1000_82542_IP4AT E1000_IP4AT -#define E1000_82542_IP6AT E1000_IP6AT -#define E1000_82542_WUPL E1000_WUPL -#define E1000_82542_WUPM E1000_WUPM -#define E1000_82542_FFLT E1000_FFLT -#define E1000_82542_FFMT E1000_FFMT -#define E1000_82542_FFVT E1000_FFVT - -struct e1000_eeprom_info { - e1000_eeprom_type type; - uint16_t word_size; - uint16_t opcode_bits; - uint16_t address_bits; - uint16_t delay_usec; - uint16_t page_size; - bool use_eerd; - bool use_eewr; -}; - -#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ -#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ -#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM - read/write registers */ -#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start - operation */ -#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write - complete */ -#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ -#define EEPROM_RESERVED_WORD 0xFFFF - -/* Register Bit Masks */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_PF_RST_DONE 0x00200000 /* PCI-X bus speed */ - -/* Constants used to intrepret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ - -/* EEPROM/Flash Control */ -#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ -#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ -#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ -#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ -#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type - * (0-small, 1-large) */ - -#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_EEPROM_GRANT_ATTEMPTS -#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SECVAL_SHIFT 22 -#define E1000_STM_OPCODE 0xDB00 -#define E1000_HICR_FW_RESET 0xC0 - -#define E1000_SHADOW_RAM_WORDS 2048 -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC0 - -/* EEPROM Read */ -#define E1000_EERD_START 0x00000001 /* Start Read */ -#define E1000_EERD_DONE 0x00000010 /* Read Done */ -#define E1000_EERD_ADDR_SHIFT 8 -#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ -#define E1000_EERD_DATA_SHIFT 16 -#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ - -/* EEPROM Commands - Microwire */ -#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ -#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ -#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ -#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ - -/* EEPROM Commands - SPI */ -#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ -#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ -#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ -#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ -#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ -#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ -#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ -#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ - -/* EEPROM Size definitions */ -#define EEPROM_WORD_SIZE_SHIFT 6 -#define EEPROM_SIZE_SHIFT 10 -#define EEPROM_SIZE_MASK 0x1C00 - -/* EEPROM Word Offsets */ -#define EEPROM_COMPAT 0x0003 -#define EEPROM_ID_LED_SETTINGS 0x0004 -#define EEPROM_VERSION 0x0005 -#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude - adjustment. */ -#define EEPROM_PHY_CLASS_WORD 0x0007 -#define EEPROM_INIT_CONTROL1_REG 0x000A -#define EEPROM_INIT_CONTROL2_REG 0x000F -#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 -#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 -#define EEPROM_INIT_3GIO_3 0x001A -#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 -#define EEPROM_CFG 0x0012 -#define EEPROM_FLASH_VERSION 0x0032 -#define EEPROM_CHECKSUM_REG 0x003F - -#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ -#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable - Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable - Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ -#define E1000_CTRL_EXT_SWDPIN6 0x00000040 /* SWDPIN 6 value */ -#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ -#define E1000_CTRL_EXT_SWDPIN7 0x00000080 /* SWDPIN 7 value */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SWDPIO6 0x00000400 /* SWDPIN 6 Input or output */ -#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ -#define E1000_CTRL_EXT_SWDPIO7 0x00000800 /* SWDPIN 7 Input or output */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -#define E1000_PHY_CTRL_SPD_EN 0x00000001 -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 -#define E1000_PHY_CTRL_B2B_EN 0x00000080 -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Receive Address */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD - -/* Interrupt Mask Clear */ -#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMC_SRPD E1000_ICR_SRPD - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ - -/* SW_W_SYNC definitions */ -#define E1000_SWFW_EEP_SM 0x0001 -#define E1000_SWFW_PHY0_SM 0x0002 -#define E1000_SWFW_PHY1_SM 0x0004 -#define E1000_SWFW_MAC_CSR_SM 0x0008 - -/* Receive Descriptor */ -#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ -#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ -#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ -#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ -#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Receive Descriptor Control */ -#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ -#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ -#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ -#define E1000_RXDCTL_FULL_RX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. - still to be processed. */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ -#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ -#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ -#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ -#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ -#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ -#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ -#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ -#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ -#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ -#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ -#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ -#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery - * Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -#define E1000_MDALIGN 4096 - -/* EEPROM Commands */ -#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */ -#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */ -#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */ -#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */ -#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */ - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -/* Mask bits for fields in Word 0x03 of the EEPROM */ -#define EEPROM_COMPAT_SERVER 0x0400 -#define EEPROM_COMPAT_CLIENT 0x0200 - -/* Mask bits for fields in Word 0x0a of the EEPROM */ -#define EEPROM_WORD0A_ILOS 0x0010 -#define EEPROM_WORD0A_SWDPIO 0x01E0 -#define EEPROM_WORD0A_LRST 0x0200 -#define EEPROM_WORD0A_FD 0x0400 -#define EEPROM_WORD0A_66MHZ 0x0800 - -/* Mask bits for fields in Word 0x0f of the EEPROM */ -#define EEPROM_WORD0F_PAUSE_MASK 0x3000 -#define EEPROM_WORD0F_PAUSE 0x1000 -#define EEPROM_WORD0F_ASM_DIR 0x2000 -#define EEPROM_WORD0F_ANE 0x0800 -#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 - -/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ -#define EEPROM_SUM 0xBABA - -/* EEPROM Map defines (WORD OFFSETS)*/ -#define EEPROM_NODE_ADDRESS_BYTE_0 0 -#define EEPROM_PBA_BYTE_1 8 - -/* EEPROM Map Sizes (Byte Counts) */ -#define PBA_SIZE 4 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 0xF -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLLISION_DISTANCE_82542 64 -#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_GB_HDX_COLLISION_DISTANCE 512 -#define E1000_COLD_SHIFT 12 - -/* The number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -#define E1000_TXDMAC_DPP 0x00000001 - -/* Adaptive IFS defines */ -#define TX_THRESHOLD_START 8 -#define TX_THRESHOLD_INCREMENT 10 -#define TX_THRESHOLD_DECREMENT 1 -#define TX_THRESHOLD_STOP 190 -#define TX_THRESHOLD_DISABLE 0 -#define TX_THRESHOLD_TIMER_MS 10000 -#define MIN_NUM_XMITS 1000 -#define IFS_MAX 80 -#define IFS_STEP 10 -#define IFS_MIN 40 -#define IFS_RATIO 4 - -/* PBA constants */ -#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* The historical defaults for the flow control values are given below. */ -#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ -#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ -#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ - -/* Flow Control High-Watermark: 43464 bytes */ -#define E1000_FC_HIGH_THRESH 0xA9C8 -/* Flow Control Low-Watermark: 43456 bytes */ -#define E1000_FC_LOW_THRESH 0xA9C0 -/* Flow Control Pause Time: 858 usec */ -#define E1000_FC_PAUSE_TIME 0x0680 - -/* The number of bits that we need to shift right to move the "pause" - * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field - * in the TXCW register - */ -#define PAUSE_SHIFT 5 - -/* The number of bits that we need to shift left to move the "SWDPIO" - * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field - * in the CTRL register - */ -#define SWDPIO_SHIFT 17 - -/* The number of bits that we need to shift left to move the "SWDPIO_EXT" - * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The - * Extended CTRL register. - * in the CTRL register - */ -#define SWDPIO__EXT_SHIFT 4 - -#define RECEIVE_BUFFER_ALIGN_SIZE (256) - -/* The number of milliseconds we wait for auto-negotiation to complete */ -#define LINK_UP_TIMEOUT 500 - -#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) - -/* Structures, enums, and macros for the PHY */ - -/* Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CTRL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Regiser */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ - -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 - -/* IGP01E1000 specifics */ -#define IGP01E1000_IEEE_REGS_PAGE 0x0000 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 -#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ - -/* IGP01E1000 AGC Registers - stores the cable length values*/ -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -/* IGP01E1000 Specific Port Config Register - R/W */ -#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 -#define IGP01E1000_PSCFR_PRE_EN 0x0020 -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 -#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 -#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 -#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 -/* IGP02E1000 AGC Registers for cable length values */ -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in - non-D0a modes */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in - D0a mode */ - -/* IGP01E1000 DSP Reset Register */ -#define IGP01E1000_PHY_DSP_RESET 0x1F33 -#define IGP01E1000_PHY_DSP_SET 0x1F71 -#define IGP01E1000_PHY_DSP_FFE 0x1F35 - -#define IGP01E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_CHANNEL_NUM 4 - -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 -#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 -#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 - -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A -/* IGP01E1000 PCS Initialization register - stores the polarity status when - * speed = 1000 Mbps. */ -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 - -#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 - -/* IGP01E1000 GMII FIFO Register */ -#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed - * on Link-Up */ -#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ - -/* IGP01E1000 Analog Register */ -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 - -/* IGP01E1000 Specific Port Control Register - R/W */ -#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 -#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 -#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 -#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ -/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ -#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */ -#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal - Disabled */ -#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */ -#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter - Disabled */ -#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 -#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI - configuration */ -#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX - configuration */ -#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic - crossover */ -#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended - Distance */ -#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300 -#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */ -#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only - (Energy Detect) */ -#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */ -#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */ -#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */ -#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000 -#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12 - -/* PHY Specific Status Register (Page 0, Register 17) */ -#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */ -#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */ -#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */ -#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */ -#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */ -#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */ -#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */ -#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */ -#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */ -#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */ -#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */ -#define GG82563_PSSR_SPEED_MASK 0xC000 -#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */ -#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */ -#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */ - -/* PHY Specific Status Register 2 (Page 0, Register 19) */ -#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */ -#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */ -#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */ -#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */ -#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */ -#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=false Carrier */ -#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */ -#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */ -#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */ -#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */ -#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */ -#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */ -#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */ - -/* PHY Specific Control Register 2 (Page 0, Register 26) */ -#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative - Polarity */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C -#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal - Operation */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns - Sequence */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns - Sequence */ -#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse - Auto-Negotiation */ -#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable - 1000BASE-T */ -#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000 -#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */ -#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */ - -/* MAC Specific Control Register (Page 2, Register 21) */ -/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ -#define GG82563_MSCR_TX_CLK_MASK 0x0007 -#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004 -#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005 -#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006 -#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007 - -#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ - -/* DSP Distance Register (Page 5, Register 26) */ -#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M; - 1 = 50-80M; - 2 = 80-110M; - 3 = 110-140M; - 4 = >140M */ - -/* Kumeran Mode Control Register (Page 193, Register 16) */ -#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, - 0=Kumeran Inband LEDs */ -#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */ -#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080 -#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400 -#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, - 0=0.8MHz */ -#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 - -/* Power Management Control Register (Page 193, Register 20) */ -#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES - Electrical Idle */ -#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */ -#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */ -#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse - Auto-Negotiation */ -#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps - Auto-Neg in non D0 */ -#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps - Auto-Neg Always */ -#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a - Reverse Auto-Negotiation */ -#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300 -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */ - -/* In-Band Control Register (Page 194, Register 18) */ -#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */ - - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL \ - GG82563_REG(0, 16) /* PHY Specific Control */ -#define GG82563_PHY_SPEC_STATUS \ - GG82563_REG(0, 17) /* PHY Specific Status */ -#define GG82563_PHY_INT_ENABLE \ - GG82563_REG(0, 18) /* Interrupt Enable */ -#define GG82563_PHY_SPEC_STATUS_2 \ - GG82563_REG(0, 19) /* PHY Specific Status 2 */ -#define GG82563_PHY_RX_ERR_CNTR \ - GG82563_REG(0, 21) /* Receive Error Counter */ -#define GG82563_PHY_PAGE_SELECT \ - GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 \ - GG82563_REG(0, 26) /* PHY Specific Control 2 */ -#define GG82563_PHY_PAGE_SELECT_ALT \ - GG82563_REG(0, 29) /* Alternate Page Select */ -#define GG82563_PHY_TEST_CLK_CTRL \ - GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ - -#define GG82563_PHY_MAC_SPEC_CTRL \ - GG82563_REG(2, 21) /* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL_2 \ - GG82563_REG(2, 26) /* MAC Specific Control 2 */ - -#define GG82563_PHY_DSP_DISTANCE \ - GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -#define GG82563_PHY_KMRN_MODE_CTRL \ - GG82563_REG(193, 16) /* Kumeran Mode Control */ -#define GG82563_PHY_PORT_RESET \ - GG82563_REG(193, 17) /* Port Reset */ -#define GG82563_PHY_REVISION_ID \ - GG82563_REG(193, 18) /* Revision ID */ -#define GG82563_PHY_DEVICE_ID \ - GG82563_REG(193, 19) /* Device ID */ -#define GG82563_PHY_PWR_MGMT_CTRL \ - GG82563_REG(193, 20) /* Power Management Control */ -#define GG82563_PHY_RATE_ADAPT_CTRL \ - GG82563_REG(193, 25) /* Rate Adaptation Control */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ - GG82563_REG(194, 16) /* FIFO's Control/Status */ -#define GG82563_PHY_KMRN_CTRL \ - GG82563_REG(194, 17) /* Control */ -#define GG82563_PHY_INBAND_CTRL \ - GG82563_REG(194, 18) /* Inband Control */ -#define GG82563_PHY_KMRN_DIAGNOSTIC \ - GG82563_REG(194, 19) /* Diagnostic */ -#define GG82563_PHY_ACK_TIMEOUTS \ - GG82563_REG(194, 20) /* Acknowledge Timeouts */ -#define GG82563_PHY_ADV_ABILITY \ - GG82563_REG(194, 21) /* Advertised Ability */ -#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ - GG82563_REG(194, 23) /* Link Partner Advertised Ability */ -#define GG82563_PHY_ADV_NEXT_PAGE \ - GG82563_REG(194, 24) /* Advertised Next Page */ -#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ - GG82563_REG(194, 25) /* Link Partner Advertised Next page */ -#define GG82563_PHY_KMRN_MISC \ - GG82563_REG(194, 26) /* Misc. */ - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */ - -/* Next Page TX Register */ -#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* Link Partner Next Page Register */ -#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ -#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ -#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 -#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 - -/* Extended Status Register */ -#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ -#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ -#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ -#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ - -#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ -#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ - -#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ - /* (0=enable, 1=disable) */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, - * 0=CLK125 toggling - */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, - * 100BASE-TX/10BASE-T: - * MDI Mode - */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled - * all speeds. - */ -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 - /* 1=Enable Extended 10BASE-T distance - * (Lower 10BASE-T RX Threshold) - * 0=Normal 10BASE-T RX Threshold */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 - /* 1=5-Bit interface in 100BASE-TX - * 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 -#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; - * 3=110-140M;4=>140M */ -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 -#define M88E1000_PSSR_MDIX_SHIFT 6 -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* Bit definitions for valid PHY IDs. */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID -#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1011_I_REV_4 0x04 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define L1LXT971A_PHY_ID 0x001378E0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define I350_I_PHY_ID 0x015403B0 - -#define BME1000_E_PHY_ID 0x01410CB0 - -#define I210_I_PHY_ID 0x01410C00 - -/* Miscellaneous PHY bit definitions. */ -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_SOF 0x01 -#define PHY_OP_READ 0x02 -#define PHY_OP_WRITE 0x01 -#define PHY_TURNAROUND 0x02 -#define PHY_PREAMBLE_SIZE 32 -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 -#define E1000_PHY_ADDRESS 0x01 -#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ -#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ -#define REG4_SPEED_MASK 0x01E0 -#define REG9_SPEED_MASK 0x0300 -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 -#define ADVERTISE_1000_FULL 0x0020 - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 -#define ICH_FLASH_FRACC 0x0050 -#define ICH_FLASH_FREG0 0x0054 -#define ICH_FLASH_FREG1 0x0058 -#define ICH_FLASH_FREG2 0x005C -#define ICH_FLASH_FREG3 0x0060 -#define ICH_FLASH_FPR0 0x0074 -#define ICH_FLASH_FPR1 0x0078 -#define ICH_FLASH_SSFSTS 0x0090 -#define ICH_FLASH_SSFCTL 0x0092 -#define ICH_FLASH_PREOP 0x0094 -#define ICH_FLASH_OPTYPE 0x0096 -#define ICH_FLASH_OPMENU 0x0098 - -#define ICH_FLASH_REG_MAPSIZE 0x00A0 -#define ICH_FLASH_SECTOR_SIZE 4096 -#define ICH_GFPREG_BASE_MASK 0x1FFF -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF - -#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ - -/* SPI EEPROM Status Register */ -#define EEPROM_STATUS_RDY_SPI 0x01 -#define EEPROM_STATUS_WEN_SPI 0x02 -#define EEPROM_STATUS_BP0_SPI 0x04 -#define EEPROM_STATUS_BP1_SPI 0x08 -#define EEPROM_STATUS_WPEN_SPI 0x80 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -/* FW Semaphore Register */ -#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ -#define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ - -#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ -#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ -#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ -#define E1000_FWSM_SKUEL_SHIFT 29 -#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ -#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ -#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ -#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ - -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Inteface Control */ - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* Mask bit for PHY class in Word 7 of the EEPROM */ -#define EEPROM_PHY_CLASS_A 0x8000 -#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ -#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ -#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ - -#define E1000_KUMCTRLSTA_MASK 0x0000FFFF -#define E1000_KUMCTRLSTA_OFFSET 0x001F0000 -#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KUMCTRLSTA_REN 0x00200000 - -#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000 -#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001 -#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002 -#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003 -#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004 -#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009 -#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010 -#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E -#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F - -/* FIFO Control */ -#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008 -#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 - -/* In-Band Control */ -#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 -#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 - -/* Half-Duplex Control */ -#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 -#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 - -#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E - -#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 -#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 - -#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 -#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 -#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 - -#define E1000_MNG_ICH_IAMT_MODE 0x2 -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009 -#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008 -#define AUTO_ALL_MODES 0 - -#ifndef E1000_MASTER_SLAVE -/* Switch to override PHY master/slave setting */ -#define E1000_MASTER_SLAVE e1000_ms_hw_default -#endif -/* Extended Transmit Control */ -#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ - -#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000 - -#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 -#define E1000_MC_TBL_SIZE_ICH8LAN 32 - -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers - after IMS clear */ -#endif /* _E1000_HW_H_ */ diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h new file mode 100644 index 0000000..82ff32e --- /dev/null +++ b/drivers/net/e1000/e1000.h @@ -0,0 +1,2139 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. + Copyright 2011 Freescale Semiconductor, Inc. + + * SPDX-License-Identifier: GPL-2.0+ + + Contact Information: + Linux NICS + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* e1000_hw.h + * Structures, enums, and macros for the MAC + */ + +#include + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#ifdef E1000_DEBUG +#define DEBUGFUNC() printf("%s\n", __func__); +#else +#define DEBUGFUNC() do { } while (0) +#endif + +/* I/O wrapper functions */ +#define E1000_WRITE_REG(a, reg, value) \ + writel((value), ((a)->hw_addr + E1000_##reg)) +#define E1000_READ_REG(a, reg) \ + readl((a)->hw_addr + E1000_##reg) +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ + writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) +#define E1000_READ_REG_ARRAY(a, reg, offset) \ + readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) +#define E1000_WRITE_FLUSH(a) \ + do { E1000_READ_REG(a, STATUS); } while (0) + +/* Enumerated types specific to the e1000 hardware */ +/* Media Access Controlers */ +typedef enum { + e1000_undefined = 0, + e1000_82542_rev2_0, + e1000_82542_rev2_1, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_82571, + e1000_82572, + e1000_82573, + e1000_82574, + e1000_80003es2lan, + e1000_ich8lan, + e1000_igb, + e1000_num_macs +} e1000_mac_type; + +/* Media Types */ +typedef enum { + e1000_media_type_copper = 0, + e1000_media_type_fiber = 1, + e1000_media_type_internal_serdes = 2, + e1000_num_media_types +} e1000_media_type; + +typedef enum { + e1000_eeprom_uninitialized = 0, + e1000_eeprom_spi, + e1000_eeprom_microwire, + e1000_eeprom_flash, + e1000_eeprom_ich8, + e1000_eeprom_none, /* No NVM support */ + e1000_eeprom_invm, + e1000_num_eeprom_types +} e1000_eeprom_type; + +/* Flow Control Settings */ +typedef enum { + e1000_fc_none = 0, + e1000_fc_rx_pause = 1, + e1000_fc_tx_pause = 2, + e1000_fc_full = 3, + e1000_fc_default = 0xFF +} e1000_fc_type; + +typedef enum { + e1000_phy_m88 = 0, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, + e1000_phy_igb, + e1000_phy_bm, + e1000_phy_82580, + e1000_phy_undefined = 0xFF +} e1000_phy_type; + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_EEPROM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_TYPE 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_NOLINK 7 +#define E1000_ERR_TIMEOUT 8 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 + +/* PCI Device IDs */ +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 +#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC +#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 +#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82574L 0x10D3 +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB + +#define E1000_DEV_ID_I350_COPPER 0x1521 +#define E1000_DEV_ID_I210_UNPROGRAMMED 0x1531 +#define E1000_DEV_ID_I211_UNPROGRAMMED 0x1532 +#define E1000_DEV_ID_I210_COPPER 0x1533 +#define E1000_DEV_ID_I210_SERDES 0x1536 +#define E1000_DEV_ID_I210_1000BASEKX 0x1537 +#define E1000_DEV_ID_I210_EXTPHY 0x1538 +#define E1000_DEV_ID_I211_COPPER 0x1539 +#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157b +#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157c + +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D + +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, + Control and Address */ +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special + control register */ +#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive false + Carrier Counter */ +#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet + Counter */ +#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error + Frame Counter */ +#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error + Counter */ +#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive + Premature End Of Frame + Error Counter */ +#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of + Frame Error Counter */ +#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber + Detect Counter */ +#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and + Status */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and + LED configuration */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ +#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control + (HWI) */ + +#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto + reduced power down */ +#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power + state of 100BASE-TX */ +#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power + state of 10BASE-T */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T + polarity */ +#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY + address */ +#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed + result 1=100Mbs, 0=10Mbs */ +#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation + duplex result 1=Full, 0=Half */ +#define IFE_PESC_POLARITY_REVERSED_SHIFT 8 + +#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down + disabled */ +#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, + 0=Normal */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity + Disabled, 0=Enabled */ +#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, + 0=Normal Jabber Operation */ +#define IFE_PSC_FORCE_POLARITY_SHIFT 5 +#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 + +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X + feature, default 0=disabled */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, + 0=force MDI */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm + is completed */ +#define IFE_PMC_MDIX_MODE_SHIFT 6 +#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ + +#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI + feature */ +#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, + 0=failed */ +#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses + on the wire */ +#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ +#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ +#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication + type of problem on the line */ +#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to + the cable problem, in 80cm granularity */ +#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ +#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 + off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +#define NODE_ADDRESS_SIZE 6 + +#define E1000_82542_2_0_REV_ID 2 +#define E1000_82542_2_1_REV_ID 3 +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +/* The number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. We + * reserve one of these spots for our directed address, allowing us room for + * E1000_RAR_ENTRIES - 1 multicast addresses. + */ +#define E1000_RAR_ENTRIES 16 + +#define MIN_NUMBER_OF_DESCRIPTORS 8 +#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 + +/* Receive Descriptor */ +struct e1000_rx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + uint16_t length; /* Length of data DMAed into data buffer */ + uint16_t csum; /* Packet checksum */ + uint8_t status; /* Descriptor status */ + uint8_t errors; /* Descriptor Errors */ + uint16_t special; +}; + +/* Receive Decriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Transmit Descriptor */ +struct e1000_tx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t cso; /* Checksum offset */ + uint8_t cmd; /* Descriptor control */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t css; /* Checksum start */ + uint16_t special; + } fields; + } upper; +}; + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Filters */ +#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ +#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Register Set. (82543, 82544) + * + * Registers are defined to be 32 bits and should be accessed as 32 bit values. + * These registers are physically located on the NIC, but are mapped into the + * host memory address space. + * + * RW - register is both readable and writable + * RO - register is read only + * WO - register is write only + * R/clr - register is read only and is cleared when read + * A - register array + */ +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_I210_EECD 0x12010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_I210_EERD 0x12014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_I210_IAM 0x000E0 /* Interrupt Ack Auto Mask - RW */ +#define E1000_RCTL 0x00100 /* RX Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* TX Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ +#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_I210_PHY_CTRL 0x00E14 /* PHY Control Register in CSR */ +#define FEXTNVM_SW_CONFIG 0x0001 +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_I210_EEMNGCTL 0x12030 /* MNG EEprom Control */ +#define E1000_FLASH_UPDATES 1000 +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_I210_EEWR 0x12018 /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ +#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ +#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ +#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ +#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ +#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ +#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ +#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ +#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ +#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ +#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ +#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ +#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ +#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ +#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ +#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ +#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ +#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +/* Register Set (82542) + * + * Some of the 82542 registers are located at different offsets than they are + * in more current versions of the 8254x. Despite the difference in location, + * the registers function in the same manner. + */ +#define E1000_82542_CTRL E1000_CTRL +#define E1000_82542_STATUS E1000_STATUS +#define E1000_82542_EECD E1000_EECD +#define E1000_82542_EERD E1000_EERD +#define E1000_82542_CTRL_EXT E1000_CTRL_EXT +#define E1000_82542_MDIC E1000_MDIC +#define E1000_82542_FCAL E1000_FCAL +#define E1000_82542_FCAH E1000_FCAH +#define E1000_82542_FCT E1000_FCT +#define E1000_82542_VET E1000_VET +#define E1000_82542_RA 0x00040 +#define E1000_82542_ICR E1000_ICR +#define E1000_82542_ITR E1000_ITR +#define E1000_82542_ICS E1000_ICS +#define E1000_82542_IMS E1000_IMS +#define E1000_82542_IMC E1000_IMC +#define E1000_82542_RCTL E1000_RCTL +#define E1000_82542_RDTR 0x00108 +#define E1000_82542_RDBAL 0x00110 +#define E1000_82542_RDBAH 0x00114 +#define E1000_82542_RDLEN 0x00118 +#define E1000_82542_RDH 0x00120 +#define E1000_82542_RDT 0x00128 +#define E1000_82542_FCRTH 0x00160 +#define E1000_82542_FCRTL 0x00168 +#define E1000_82542_FCTTV E1000_FCTTV +#define E1000_82542_TXCW E1000_TXCW +#define E1000_82542_RXCW E1000_RXCW +#define E1000_82542_MTA 0x00200 +#define E1000_82542_TCTL E1000_TCTL +#define E1000_82542_TIPG E1000_TIPG +#define E1000_82542_TDBAL 0x00420 +#define E1000_82542_TDBAH 0x00424 +#define E1000_82542_TDLEN 0x00428 +#define E1000_82542_TDH 0x00430 +#define E1000_82542_TDT 0x00438 +#define E1000_82542_TIDV 0x00440 +#define E1000_82542_TBT E1000_TBT +#define E1000_82542_AIT E1000_AIT +#define E1000_82542_VFTA 0x00600 +#define E1000_82542_LEDCTL E1000_LEDCTL +#define E1000_82542_PBA E1000_PBA +#define E1000_82542_RXDCTL E1000_RXDCTL +#define E1000_82542_RADV E1000_RADV +#define E1000_82542_RSRPD E1000_RSRPD +#define E1000_82542_TXDMAC E1000_TXDMAC +#define E1000_82542_TXDCTL E1000_TXDCTL +#define E1000_82542_TADV E1000_TADV +#define E1000_82542_TSPMT E1000_TSPMT +#define E1000_82542_CRCERRS E1000_CRCERRS +#define E1000_82542_ALGNERRC E1000_ALGNERRC +#define E1000_82542_SYMERRS E1000_SYMERRS +#define E1000_82542_RXERRC E1000_RXERRC +#define E1000_82542_MPC E1000_MPC +#define E1000_82542_SCC E1000_SCC +#define E1000_82542_ECOL E1000_ECOL +#define E1000_82542_MCC E1000_MCC +#define E1000_82542_LATECOL E1000_LATECOL +#define E1000_82542_COLC E1000_COLC +#define E1000_82542_DC E1000_DC +#define E1000_82542_TNCRS E1000_TNCRS +#define E1000_82542_SEC E1000_SEC +#define E1000_82542_CEXTERR E1000_CEXTERR +#define E1000_82542_RLEC E1000_RLEC +#define E1000_82542_XONRXC E1000_XONRXC +#define E1000_82542_XONTXC E1000_XONTXC +#define E1000_82542_XOFFRXC E1000_XOFFRXC +#define E1000_82542_XOFFTXC E1000_XOFFTXC +#define E1000_82542_FCRUC E1000_FCRUC +#define E1000_82542_PRC64 E1000_PRC64 +#define E1000_82542_PRC127 E1000_PRC127 +#define E1000_82542_PRC255 E1000_PRC255 +#define E1000_82542_PRC511 E1000_PRC511 +#define E1000_82542_PRC1023 E1000_PRC1023 +#define E1000_82542_PRC1522 E1000_PRC1522 +#define E1000_82542_GPRC E1000_GPRC +#define E1000_82542_BPRC E1000_BPRC +#define E1000_82542_MPRC E1000_MPRC +#define E1000_82542_GPTC E1000_GPTC +#define E1000_82542_GORCL E1000_GORCL +#define E1000_82542_GORCH E1000_GORCH +#define E1000_82542_GOTCL E1000_GOTCL +#define E1000_82542_GOTCH E1000_GOTCH +#define E1000_82542_RNBC E1000_RNBC +#define E1000_82542_RUC E1000_RUC +#define E1000_82542_RFC E1000_RFC +#define E1000_82542_ROC E1000_ROC +#define E1000_82542_RJC E1000_RJC +#define E1000_82542_MGTPRC E1000_MGTPRC +#define E1000_82542_MGTPDC E1000_MGTPDC +#define E1000_82542_MGTPTC E1000_MGTPTC +#define E1000_82542_TORL E1000_TORL +#define E1000_82542_TORH E1000_TORH +#define E1000_82542_TOTL E1000_TOTL +#define E1000_82542_TOTH E1000_TOTH +#define E1000_82542_TPR E1000_TPR +#define E1000_82542_TPT E1000_TPT +#define E1000_82542_PTC64 E1000_PTC64 +#define E1000_82542_PTC127 E1000_PTC127 +#define E1000_82542_PTC255 E1000_PTC255 +#define E1000_82542_PTC511 E1000_PTC511 +#define E1000_82542_PTC1023 E1000_PTC1023 +#define E1000_82542_PTC1522 E1000_PTC1522 +#define E1000_82542_MPTC E1000_MPTC +#define E1000_82542_BPTC E1000_BPTC +#define E1000_82542_TSCTC E1000_TSCTC +#define E1000_82542_TSCTFC E1000_TSCTFC +#define E1000_82542_RXCSUM E1000_RXCSUM +#define E1000_82542_WUC E1000_WUC +#define E1000_82542_WUFC E1000_WUFC +#define E1000_82542_WUS E1000_WUS +#define E1000_82542_MANC E1000_MANC +#define E1000_82542_IPAV E1000_IPAV +#define E1000_82542_IP4AT E1000_IP4AT +#define E1000_82542_IP6AT E1000_IP6AT +#define E1000_82542_WUPL E1000_WUPL +#define E1000_82542_WUPM E1000_WUPM +#define E1000_82542_FFLT E1000_FFLT +#define E1000_82542_FFMT E1000_FFMT +#define E1000_82542_FFVT E1000_FFVT + +struct e1000_eeprom_info { + e1000_eeprom_type type; + uint16_t word_size; + uint16_t opcode_bits; + uint16_t address_bits; + uint16_t delay_usec; + uint16_t page_size; + bool use_eerd; + bool use_eewr; +}; + +#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ +#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM + read/write registers */ +#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start + operation */ +#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write + complete */ +#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ +#define EEPROM_RESERVED_WORD 0xFFFF + +/* Register Bit Masks */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ +#define E1000_STATUS_PF_RST_DONE 0x00200000 /* PCI-X bus speed */ + +/* Constants used to intrepret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ + +/* EEPROM/Flash Control */ +#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ +#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ +#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ +#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type + * (0-small, 1-large) */ + +#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_EEPROM_GRANT_ATTEMPTS +#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ +#endif +#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ +#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ +#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SECVAL_SHIFT 22 +#define E1000_STM_OPCODE 0xDB00 +#define E1000_HICR_FW_RESET 0xC0 + +#define E1000_SHADOW_RAM_WORDS 2048 +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC0 + +/* EEPROM Read */ +#define E1000_EERD_START 0x00000001 /* Start Read */ +#define E1000_EERD_DONE 0x00000010 /* Read Done */ +#define E1000_EERD_ADDR_SHIFT 8 +#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ +#define E1000_EERD_DATA_SHIFT 16 +#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ + +/* EEPROM Commands - Microwire */ +#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ +#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ +#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ +#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ + +/* EEPROM Commands - SPI */ +#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ +#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ +#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ +#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ +#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ +#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ +#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ +#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ + +/* EEPROM Size definitions */ +#define EEPROM_WORD_SIZE_SHIFT 6 +#define EEPROM_SIZE_SHIFT 10 +#define EEPROM_SIZE_MASK 0x1C00 + +/* EEPROM Word Offsets */ +#define EEPROM_COMPAT 0x0003 +#define EEPROM_ID_LED_SETTINGS 0x0004 +#define EEPROM_VERSION 0x0005 +#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude + adjustment. */ +#define EEPROM_PHY_CLASS_WORD 0x0007 +#define EEPROM_INIT_CONTROL1_REG 0x000A +#define EEPROM_INIT_CONTROL2_REG 0x000F +#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 +#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 +#define EEPROM_INIT_3GIO_3 0x001A +#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 +#define EEPROM_CFG 0x0012 +#define EEPROM_FLASH_VERSION 0x0032 +#define EEPROM_CHECKSUM_REG 0x003F + +#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ +#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable + Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable + Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SWDPIN6 0x00000040 /* SWDPIN 6 value */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SWDPIN7 0x00000080 /* SWDPIN 7 value */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SWDPIO6 0x00000400 /* SWDPIN 6 Input or output */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_SWDPIO7 0x00000800 /* SWDPIN 7 Input or output */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +#define E1000_PHY_CTRL_SPD_EN 0x00000001 +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 +#define E1000_PHY_CTRL_B2B_EN 0x00000080 +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Receive Address */ +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Clear */ +#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMC_SRPD E1000_ICR_SRPD + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ + +/* SW_W_SYNC definitions */ +#define E1000_SWFW_EEP_SM 0x0001 +#define E1000_SWFW_PHY0_SM 0x0002 +#define E1000_SWFW_PHY1_SM 0x0004 +#define E1000_SWFW_MAC_CSR_SM 0x0008 + +/* Receive Descriptor */ +#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ +#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ +#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Receive Descriptor Control */ +#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ +#define E1000_RXDCTL_FULL_RX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. + still to be processed. */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ +#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ +#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ +#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ +#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ +#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery + * Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +#define E1000_MDALIGN 4096 + +/* EEPROM Commands */ +#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */ +#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */ +#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */ +#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */ +#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */ + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define EEPROM_COMPAT_SERVER 0x0400 +#define EEPROM_COMPAT_CLIENT 0x0200 + +/* Mask bits for fields in Word 0x0a of the EEPROM */ +#define EEPROM_WORD0A_ILOS 0x0010 +#define EEPROM_WORD0A_SWDPIO 0x01E0 +#define EEPROM_WORD0A_LRST 0x0200 +#define EEPROM_WORD0A_FD 0x0400 +#define EEPROM_WORD0A_66MHZ 0x0800 + +/* Mask bits for fields in Word 0x0f of the EEPROM */ +#define EEPROM_WORD0F_PAUSE_MASK 0x3000 +#define EEPROM_WORD0F_PAUSE 0x1000 +#define EEPROM_WORD0F_ASM_DIR 0x2000 +#define EEPROM_WORD0F_ANE 0x0800 +#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 + +/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ +#define EEPROM_SUM 0xBABA + +/* EEPROM Map defines (WORD OFFSETS)*/ +#define EEPROM_NODE_ADDRESS_BYTE_0 0 +#define EEPROM_PBA_BYTE_1 8 + +/* EEPROM Map Sizes (Byte Counts) */ +#define PBA_SIZE 4 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 0xF +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLLISION_DISTANCE_82542 64 +#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_GB_HDX_COLLISION_DISTANCE 512 +#define E1000_COLD_SHIFT 12 + +/* The number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +#define E1000_TXDMAC_DPP 0x00000001 + +/* Adaptive IFS defines */ +#define TX_THRESHOLD_START 8 +#define TX_THRESHOLD_INCREMENT 10 +#define TX_THRESHOLD_DECREMENT 1 +#define TX_THRESHOLD_STOP 190 +#define TX_THRESHOLD_DISABLE 0 +#define TX_THRESHOLD_TIMER_MS 10000 +#define MIN_NUM_XMITS 1000 +#define IFS_MAX 80 +#define IFS_STEP 10 +#define IFS_MIN 40 +#define IFS_RATIO 4 + +/* PBA constants */ +#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* The historical defaults for the flow control values are given below. */ +#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ +#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ +#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ + +/* Flow Control High-Watermark: 43464 bytes */ +#define E1000_FC_HIGH_THRESH 0xA9C8 +/* Flow Control Low-Watermark: 43456 bytes */ +#define E1000_FC_LOW_THRESH 0xA9C0 +/* Flow Control Pause Time: 858 usec */ +#define E1000_FC_PAUSE_TIME 0x0680 + +/* The number of bits that we need to shift right to move the "pause" + * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field + * in the TXCW register + */ +#define PAUSE_SHIFT 5 + +/* The number of bits that we need to shift left to move the "SWDPIO" + * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field + * in the CTRL register + */ +#define SWDPIO_SHIFT 17 + +/* The number of bits that we need to shift left to move the "SWDPIO_EXT" + * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The + * Extended CTRL register. + * in the CTRL register + */ +#define SWDPIO__EXT_SHIFT 4 + +#define RECEIVE_BUFFER_ALIGN_SIZE (256) + +/* The number of milliseconds we wait for auto-negotiation to complete */ +#define LINK_UP_TIMEOUT 500 + +#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) + +/* Structures, enums, and macros for the PHY */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CTRL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Regiser */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ + +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 + +/* IGP01E1000 specifics */ +#define IGP01E1000_IEEE_REGS_PAGE 0x0000 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 +#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ + +/* IGP01E1000 AGC Registers - stores the cable length values*/ +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +/* IGP01E1000 Specific Port Config Register - R/W */ +#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 +#define IGP01E1000_PSCFR_PRE_EN 0x0020 +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 +#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 +#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 +#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 +/* IGP02E1000 AGC Registers for cable length values */ +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in + non-D0a modes */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in + D0a mode */ + +/* IGP01E1000 DSP Reset Register */ +#define IGP01E1000_PHY_DSP_RESET 0x1F33 +#define IGP01E1000_PHY_DSP_SET 0x1F71 +#define IGP01E1000_PHY_DSP_FFE 0x1F35 + +#define IGP01E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 +#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 +#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 + +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A +/* IGP01E1000 PCS Initialization register - stores the polarity status when + * speed = 1000 Mbps. */ +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 + +#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 + +/* IGP01E1000 GMII FIFO Register */ +#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed + * on Link-Up */ +#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ + +/* IGP01E1000 Analog Register */ +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 + +/* IGP01E1000 Specific Port Control Register - R/W */ +#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 +#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 +#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 +#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal + Disabled */ +#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */ +#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter + Disabled */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI + configuration */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX + configuration */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic + crossover */ +#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended + Distance */ +#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300 +#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */ +#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only + (Energy Detect) */ +#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */ +#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */ +#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */ +#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000 +#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12 + +/* PHY Specific Status Register (Page 0, Register 17) */ +#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */ +#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */ +#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */ +#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */ +#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */ +#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */ +#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */ +#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */ +#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */ +#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */ +#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */ +#define GG82563_PSSR_SPEED_MASK 0xC000 +#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */ +#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */ +#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */ + +/* PHY Specific Status Register 2 (Page 0, Register 19) */ +#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */ +#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */ +#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */ +#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */ +#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */ +#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=false Carrier */ +#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */ +#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */ +#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */ +#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */ +#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */ +#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */ +#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative + Polarity */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C +#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal + Operation */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns + Sequence */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns + Sequence */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse + Auto-Negotiation */ +#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable + 1000BASE-T */ +#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000 +#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */ +#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006 +#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M; + 1 = 50-80M; + 2 = 80-110M; + 3 = 110-140M; + 4 = >140M */ + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, + 0=Kumeran Inband LEDs */ +#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */ +#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080 +#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400 +#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, + 0=0.8MHz */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Power Management Control Register (Page 193, Register 20) */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES + Electrical Idle */ +#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */ +#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */ +#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse + Auto-Negotiation */ +#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps + Auto-Neg in non D0 */ +#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps + Auto-Neg Always */ +#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a + Reverse Auto-Negotiation */ +#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300 +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */ + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */ + + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL \ + GG82563_REG(0, 16) /* PHY Specific Control */ +#define GG82563_PHY_SPEC_STATUS \ + GG82563_REG(0, 17) /* PHY Specific Status */ +#define GG82563_PHY_INT_ENABLE \ + GG82563_REG(0, 18) /* Interrupt Enable */ +#define GG82563_PHY_SPEC_STATUS_2 \ + GG82563_REG(0, 19) /* PHY Specific Status 2 */ +#define GG82563_PHY_RX_ERR_CNTR \ + GG82563_REG(0, 21) /* Receive Error Counter */ +#define GG82563_PHY_PAGE_SELECT \ + GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 \ + GG82563_REG(0, 26) /* PHY Specific Control 2 */ +#define GG82563_PHY_PAGE_SELECT_ALT \ + GG82563_REG(0, 29) /* Alternate Page Select */ +#define GG82563_PHY_TEST_CLK_CTRL \ + GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ + +#define GG82563_PHY_MAC_SPEC_CTRL \ + GG82563_REG(2, 21) /* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL_2 \ + GG82563_REG(2, 26) /* MAC Specific Control 2 */ + +#define GG82563_PHY_DSP_DISTANCE \ + GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +#define GG82563_PHY_KMRN_MODE_CTRL \ + GG82563_REG(193, 16) /* Kumeran Mode Control */ +#define GG82563_PHY_PORT_RESET \ + GG82563_REG(193, 17) /* Port Reset */ +#define GG82563_PHY_REVISION_ID \ + GG82563_REG(193, 18) /* Revision ID */ +#define GG82563_PHY_DEVICE_ID \ + GG82563_REG(193, 19) /* Device ID */ +#define GG82563_PHY_PWR_MGMT_CTRL \ + GG82563_REG(193, 20) /* Power Management Control */ +#define GG82563_PHY_RATE_ADAPT_CTRL \ + GG82563_REG(193, 25) /* Rate Adaptation Control */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ + GG82563_REG(194, 16) /* FIFO's Control/Status */ +#define GG82563_PHY_KMRN_CTRL \ + GG82563_REG(194, 17) /* Control */ +#define GG82563_PHY_INBAND_CTRL \ + GG82563_REG(194, 18) /* Inband Control */ +#define GG82563_PHY_KMRN_DIAGNOSTIC \ + GG82563_REG(194, 19) /* Diagnostic */ +#define GG82563_PHY_ACK_TIMEOUTS \ + GG82563_REG(194, 20) /* Acknowledge Timeouts */ +#define GG82563_PHY_ADV_ABILITY \ + GG82563_REG(194, 21) /* Advertised Ability */ +#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ + GG82563_REG(194, 23) /* Link Partner Advertised Ability */ +#define GG82563_PHY_ADV_NEXT_PAGE \ + GG82563_REG(194, 24) /* Advertised Next Page */ +#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ + GG82563_REG(194, 25) /* Link Partner Advertised Next page */ +#define GG82563_PHY_KMRN_MISC \ + GG82563_REG(194, 26) /* Misc. */ + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */ + +/* Next Page TX Register */ +#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* Link Partner Next Page Register */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 +#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 + +/* Extended Status Register */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ + +#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ + +#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ + /* (0=enable, 1=disable) */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, + * 0=CLK125 toggling + */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, + * 100BASE-TX/10BASE-T: + * MDI Mode + */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled + * all speeds. + */ +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 + /* 1=Enable Extended 10BASE-T distance + * (Lower 10BASE-T RX Threshold) + * 0=Normal 10BASE-T RX Threshold */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 + /* 1=5-Bit interface in 100BASE-TX + * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 +#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; + * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 +#define M88E1000_PSSR_MDIX_SHIFT 6 +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* Bit definitions for valid PHY IDs. */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID +#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1011_I_REV_4 0x04 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define L1LXT971A_PHY_ID 0x001378E0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define I350_I_PHY_ID 0x015403B0 + +#define BME1000_E_PHY_ID 0x01410CB0 + +#define I210_I_PHY_ID 0x01410C00 + +/* Miscellaneous PHY bit definitions. */ +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_SOF 0x01 +#define PHY_OP_READ 0x02 +#define PHY_OP_WRITE 0x01 +#define PHY_TURNAROUND 0x02 +#define PHY_PREAMBLE_SIZE 32 +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 +#define E1000_PHY_ADDRESS 0x01 +#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ +#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ +#define REG4_SPEED_MASK 0x01E0 +#define REG9_SPEED_MASK 0x0300 +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 +#define ADVERTISE_1000_FULL 0x0020 + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 +#define ICH_FLASH_FRACC 0x0050 +#define ICH_FLASH_FREG0 0x0054 +#define ICH_FLASH_FREG1 0x0058 +#define ICH_FLASH_FREG2 0x005C +#define ICH_FLASH_FREG3 0x0060 +#define ICH_FLASH_FPR0 0x0074 +#define ICH_FLASH_FPR1 0x0078 +#define ICH_FLASH_SSFSTS 0x0090 +#define ICH_FLASH_SSFCTL 0x0092 +#define ICH_FLASH_PREOP 0x0094 +#define ICH_FLASH_OPTYPE 0x0096 +#define ICH_FLASH_OPMENU 0x0098 + +#define ICH_FLASH_REG_MAPSIZE 0x00A0 +#define ICH_FLASH_SECTOR_SIZE 4096 +#define ICH_GFPREG_BASE_MASK 0x1FFF +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF + +#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ + +/* SPI EEPROM Status Register */ +#define EEPROM_STATUS_RDY_SPI 0x01 +#define EEPROM_STATUS_WEN_SPI 0x02 +#define EEPROM_STATUS_BP0_SPI 0x04 +#define EEPROM_STATUS_BP1_SPI 0x08 +#define EEPROM_STATUS_WPEN_SPI 0x80 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +/* FW Semaphore Register */ +#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ +#define E1000_FWSM_MODE_SHIFT 1 +#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ + +#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ +#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ +#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ +#define E1000_FWSM_SKUEL_SHIFT 29 +#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ +#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ +#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ +#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ + +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Inteface Control */ + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* Mask bit for PHY class in Word 7 of the EEPROM */ +#define EEPROM_PHY_CLASS_A 0x8000 +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ +#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ +#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ + +#define E1000_KUMCTRLSTA_MASK 0x0000FFFF +#define E1000_KUMCTRLSTA_OFFSET 0x001F0000 +#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KUMCTRLSTA_REN 0x00200000 + +#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000 +#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001 +#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002 +#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003 +#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004 +#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009 +#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010 +#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E +#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F + +/* FIFO Control */ +#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008 +#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 + +/* In-Band Control */ +#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 +#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 + +/* Half-Duplex Control */ +#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 +#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 + +#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E + +#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 +#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 + +#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 +#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 +#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 + +#define E1000_MNG_ICH_IAMT_MODE 0x2 +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009 +#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008 +#define AUTO_ALL_MODES 0 + +#ifndef E1000_MASTER_SLAVE +/* Switch to override PHY master/slave setting */ +#define E1000_MASTER_SLAVE e1000_ms_hw_default +#endif +/* Extended Transmit Control */ +#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ + +#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000 + +#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 +#define E1000_MC_TBL_SIZE_ICH8LAN 32 + +#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers + after IMS clear */ + + +struct e1000_hw { + struct eth_device edev; + + struct pci_dev *pdev; + struct device_d *dev; + + void __iomem *hw_addr; + + e1000_mac_type mac_type; + e1000_phy_type phy_type; + uint32_t txd_cmd; + e1000_media_type media_type; + e1000_fc_type fc; + struct e1000_eeprom_info eeprom; + uint32_t phy_id; + uint32_t phy_revision; + uint32_t original_fc; + uint32_t autoneg_failed; + uint16_t autoneg_advertised; + uint16_t pci_cmd_word; + uint16_t device_id; + uint16_t vendor_id; + uint8_t revision_id; + struct mii_bus miibus; + + struct e1000_tx_desc *tx_base; + struct e1000_rx_desc *rx_base; + unsigned char *packet; + + int tx_tail; + int rx_tail, rx_last; +}; + +int32_t e1000_init_eeprom_params(struct e1000_hw *hw); +int e1000_validate_eeprom_checksum(struct e1000_hw *hw); +int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, + uint16_t words, + uint16_t *data); + +int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); + + +#endif /* _E1000_HW_H_ */ diff --git a/drivers/net/e1000/eeprom.c b/drivers/net/e1000/eeprom.c new file mode 100644 index 0000000..fb39a85 --- /dev/null +++ b/drivers/net/e1000/eeprom.c @@ -0,0 +1,747 @@ +#include +#include +#include +#include + +#include "e1000.h" + + + +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd) +{ + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + udelay(50); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd) +{ + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + udelay(50); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) +{ + uint32_t eecd; + uint32_t mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = E1000_READ_REG(hw, EECD); + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + + udelay(50); + + e1000_raise_ee_clk(hw, &eecd); + e1000_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while (mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) +{ + uint32_t eecd; + uint32_t i; + uint16_t data; + + /* In order to read a register from the EEPROM, we need to shift 'count' + * bits in from the EEPROM. Bits are "shifted in" by raising the clock + * input to the EEPROM (setting the SK bit), and then reading the + * value of the "DO" bit. During this "shifting in" process the + * "DI" bit should always be clear. + */ + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data = data << 1; + e1000_raise_ee_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DI); + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_ee_clk(hw, &eecd); + } + + return data; +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void e1000_standby_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + } +} + +/*************************************************************************** +* Description: Determines if the onboard NVM is FLASH or EEPROM. +* +* hw - Struct containing variables accessed by shared code +****************************************************************************/ +static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) +{ + uint32_t eecd = 0; + + DEBUGFUNC(); + + if (hw->mac_type == e1000_ich8lan) + return false; + + if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { + eecd = E1000_READ_REG(hw, EECD); + + /* Isolate bits 15 & 16 */ + eecd = ((eecd >> 15) & 0x03); + + /* If both bits are set, device is Flash type */ + if (eecd == 0x03) + return false; + } + return true; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static int32_t e1000_acquire_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd, i = 0; + + DEBUGFUNC(); + + if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) + return -E1000_ERR_SWFW_SYNC; + eecd = E1000_READ_REG(hw, EECD); + + /* Request EEPROM Access */ + if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 && + hw->mac_type != e1000_82574) { + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while ((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + udelay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if (!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + dev_dbg(hw->dev, "Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Setup EEPROM for Read/Write */ + + if (eeprom->type == e1000_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + udelay(1); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Sets up eeprom variables in the hw struct. Must be called after mac_type + * is configured. Additionally, if this is ICH8, the flash controller GbE + * registers must be mapped, or this will crash. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t e1000_init_eeprom_params(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + int32_t ret_val = E1000_SUCCESS; + uint16_t eeprom_size; + + if (hw->mac_type == e1000_igb) + eecd = E1000_READ_REG(hw, I210_EECD); + else + eecd = E1000_READ_REG(hw, EECD); + + DEBUGFUNC(); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + eeprom->type = e1000_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82571: + case e1000_82572: + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82573: + case e1000_82574: + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + if (e1000_is_onboard_nvm_eeprom(hw) == false) { + eeprom->use_eerd = true; + eeprom->use_eewr = true; + + eeprom->type = e1000_eeprom_flash; + eeprom->word_size = 2048; + + /* Ensure that the Autonomous FLASH update bit is cleared due to + * Flash update issue on parts which use a FLASH for NVM. */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, EECD, eecd); + } + break; + case e1000_80003es2lan: + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = true; + eeprom->use_eewr = false; + break; + case e1000_igb: + /* i210 has 4k of iNVM mapped as EEPROM */ + eeprom->type = e1000_eeprom_invm; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + eeprom->page_size = 32; + eeprom->address_bits = 16; + eeprom->use_eerd = true; + eeprom->use_eewr = false; + break; + default: + break; + } + + if (eeprom->type == e1000_eeprom_spi || + eeprom->type == e1000_eeprom_invm) { + /* eeprom_size will be an enum [0..8] that maps + * to eeprom sizes 128B to + * 32KB (incremented by powers of 2). + */ + if (hw->mac_type <= e1000_82547_rev_2) { + /* Set to default value for initial eeprom read. */ + eeprom->word_size = 64; + ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, + &eeprom_size); + if (ret_val) + return ret_val; + eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) + >> EEPROM_SIZE_SHIFT; + /* 256B eeprom size was not supported in earlier + * hardware, so we bump eeprom_size up one to + * ensure that "1" (which maps to 256B) is never + * the result used in the shifting logic below. */ + if (eeprom_size) + eeprom_size++; + } else { + eeprom_size = (uint16_t)((eecd & + E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + } + + eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); + } + return ret_val; +} + +/****************************************************************************** + * Polls the status bit (bit 1) of the EERD to determine when the read is done. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) +{ + uint32_t attempts = 100000; + uint32_t i, reg = 0; + int32_t done = E1000_ERR_EEPROM; + + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) { + if (hw->mac_type == e1000_igb) + reg = E1000_READ_REG(hw, I210_EERD); + else + reg = E1000_READ_REG(hw, EERD); + } else { + if (hw->mac_type == e1000_igb) + reg = E1000_READ_REG(hw, I210_EEWR); + else + reg = E1000_READ_REG(hw, EEWR); + } + + if (reg & E1000_EEPROM_RW_REG_DONE) { + done = E1000_SUCCESS; + break; + } + udelay(5); + } + + return done; +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM using the EERD register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + uint32_t i, eerd = 0; + int32_t error = 0; + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + + E1000_EEPROM_RW_REG_START; + + if (hw->mac_type == e1000_igb) + E1000_WRITE_REG(hw, I210_EERD, eerd); + else + E1000_WRITE_REG(hw, EERD, eerd); + + error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); + + if (error) + break; + + if (hw->mac_type == e1000_igb) { + data[i] = (E1000_READ_REG(hw, I210_EERD) >> + E1000_EEPROM_RW_REG_DATA); + } else { + data[i] = (E1000_READ_REG(hw, EERD) >> + E1000_EEPROM_RW_REG_DATA); + } + + } + + return error; +} + +static void e1000_release_eeprom(struct e1000_hw *hw) +{ + uint32_t eecd; + + DEBUGFUNC(); + + eecd = E1000_READ_REG(hw, EECD); + + if (hw->eeprom.type == e1000_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ + + E1000_WRITE_REG(hw, EECD, eecd); + + udelay(hw->eeprom.delay_usec); + } else if (hw->eeprom.type == e1000_eeprom_microwire) { + /* cleanup eeprom */ + + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + E1000_WRITE_REG(hw, EECD, eecd); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); + } + + /* Stop requesting EEPROM access */ + if (hw->mac_type > e1000_82544) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } +} +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw) +{ + uint16_t retry_count = 0; + uint8_t spi_stat_reg; + + DEBUGFUNC(); + + /* Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + udelay(5); + retry_count += 5; + + e1000_standby_eeprom(hw); + } while (retry_count < EEPROM_MAX_RETRY_SPI); + + /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if (retry_count >= EEPROM_MAX_RETRY_SPI) { + dev_dbg(hw->dev, "SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + *****************************************************************************/ +int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, + uint16_t words, uint16_t *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t i = 0; + + DEBUGFUNC(); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + e1000_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= eeprom->word_size) || + (words > eeprom->word_size - offset) || + (words == 0)) { + dev_dbg(hw->dev, "\"words\" parameter out of bounds." + "Words = %d, size = %d\n", offset, eeprom->word_size); + return -E1000_ERR_EEPROM; + } + + /* EEPROM's that don't use EERD to read require us to bit-bang the SPI + * directly. In this case, we need to acquire the EEPROM so that + * FW or other port software does not interrupt. + */ + if (e1000_is_onboard_nvm_eeprom(hw) == true && + hw->eeprom.use_eerd == false) { + + /* Prepare the EEPROM for bit-bang reading */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + + /* Eerd register EEPROM access requires no eeprom aquire/release */ + if (eeprom->use_eerd == true) + return e1000_read_eeprom_eerd(hw, offset, words, data); + + /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have + * acquired the EEPROM at this point, so any returns should relase it */ + if (eeprom->type == e1000_eeprom_spi) { + uint16_t word_in; + uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; + + if (e1000_spi_eeprom_ready(hw)) { + e1000_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in + * the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), + eeprom->address_bits); + + /* Read the data. The address of the eeprom internally + * increments with each byte (spi) being read, saving on the + * overhead of eeprom setup and tear-down. The address + * counter will roll over if reading beyond the size of + * the eeprom, thus allowing the entire memory to be read + * starting from any offset. */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if (eeprom->type == e1000_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, + EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), + eeprom->address_bits); + + /* Read the data. For microwire, each word requires + * the overhead of eeprom setup and tear-down. */ + data[i] = e1000_shift_in_ee_bits(hw, 16); + e1000_standby_eeprom(hw); + } + } + + /* End this read operation */ + e1000_release_eeprom(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + * + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +int e1000_validate_eeprom_checksum(struct e1000_hw *hw) +{ + uint16_t i, checksum, checksum_reg; + uint16_t buf[EEPROM_CHECKSUM_REG + 1]; + + DEBUGFUNC(); + + /* Read the EEPROM */ + if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { + dev_err(&hw->edev.dev, "Unable to read EEPROM!\n"); + return -E1000_ERR_EEPROM; + } + + /* Compute the checksum */ + checksum = 0; + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) + checksum += buf[i]; + checksum = ((uint16_t)EEPROM_SUM) - checksum; + checksum_reg = buf[i]; + + /* Verify it! */ + if (checksum == checksum_reg) + return 0; + + /* Hrm, verification failed, print an error */ + dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n"); + dev_err(&hw->edev.dev, " ...register was 0x%04hx, calculated 0x%04hx\n", + checksum_reg, checksum); + + return -E1000_ERR_EEPROM; +} diff --git a/drivers/net/e1000/main.c b/drivers/net/e1000/main.c new file mode 100644 index 0000000..552b0dc --- /dev/null +++ b/drivers/net/e1000/main.c @@ -0,0 +1,3681 @@ +/************************************************************************** +Intel Pro 1000 for ppcboot/das-u-boot +Drivers are port from Intel's Linux driver e1000-4.3.15 +and from Etherboot pro 1000 driver by mrakes at vivato dot net +tested on both gig copper and gig fiber boards +***************************************************************************/ +/******************************************************************************* + + + Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. + + * SPDX-License-Identifier: GPL-2.0+ + + Contact Information: + Linux NICS + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ +/* + * Copyright (C) Archway Digital Solutions. + * + * written by Chrsitopher Li or + * 2/9/2002 + * + * Copyright (C) Linux Networx. + * Massive upgrade to work with the new intel gigabit NICs. + * + * + * Copyright 2011 Freescale Semiconductor, Inc. + */ + +#include +#include +#include +#include +#include +#include +#include "e1000.h" + +static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr) +{ + return (u32)adr; +} + +#define PCI_VENDOR_ID_INTEL 0x8086 + + +/* Function forward declarations */ +static int e1000_setup_link(struct e1000_hw *hw); +static int e1000_setup_fiber_link(struct e1000_hw *hw); +static int e1000_setup_copper_link(struct e1000_hw *hw); +static int e1000_phy_setup_autoneg(struct e1000_hw *hw); +static void e1000_config_collision_dist(struct e1000_hw *hw); +static int e1000_config_mac_to_phy(struct e1000_hw *hw); +static int e1000_config_fc_after_link_up(struct e1000_hw *hw); +static int e1000_wait_autoneg(struct e1000_hw *hw); +static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, + uint16_t *duplex); +static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, + uint16_t *phy_data); +static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, + uint16_t phy_data); +static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); +static int e1000_phy_reset(struct e1000_hw *hw); +static int e1000_detect_gig_phy(struct e1000_hw *hw); +static void e1000_set_media_type(struct e1000_hw *hw); + + +static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); + +static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); + +static bool e1000_media_copper(struct e1000_hw *hw) +{ + if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) + return 1; + + return hw->media_type == e1000_media_type_copper; +} + +static bool e1000_media_fiber(struct e1000_hw *hw) +{ + if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) + return 0; + + return hw->media_type == e1000_media_type_fiber; +} + +static bool e1000_media_fiber_serdes(struct e1000_hw *hw) +{ + if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) + return 0; + + return hw->media_type == e1000_media_type_fiber || + hw->media_type == e1000_media_type_internal_serdes; +} + +/***************************************************************************** + * Set PHY to class A mode + * Assumes the following operations will follow to enable the new class mode. + * 1. Do a PHY soft reset + * 2. Restart auto-negotiation or force link. + * + * hw - Struct containing variables accessed by shared code + ****************************************************************************/ +static int32_t e1000_set_phy_mode(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC(); + + if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) { + ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, + 1, &eeprom_data); + if (ret_val) + return ret_val; + + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = e1000_write_phy_reg(hw, + M88E1000_PHY_PAGE_SELECT, 0x000B); + if (ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, + M88E1000_PHY_GEN_CONTROL, 0x8104); + if (ret_val) + return ret_val; + } + } + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Obtaining software semaphore bit (SMBI) before resetting PHY. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_RESET if fail to obtain semaphore. + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +static int32_t e1000_get_software_semaphore(struct e1000_hw *hw) +{ + int32_t timeout = hw->eeprom.word_size + 1; + uint32_t swsm; + + DEBUGFUNC(); + + swsm = E1000_READ_REG(hw, SWSM); + swsm &= ~E1000_SWSM_SMBI; + E1000_WRITE_REG(hw, SWSM, swsm); + + if (hw->mac_type != e1000_80003es2lan) + return E1000_SUCCESS; + + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + /* If SMBI bit cleared, it is now set and we hold + * the semaphore */ + if (!(swsm & E1000_SWSM_SMBI)) + return 0; + mdelay(1); + timeout--; + } + + dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_RESET; +} + +/*************************************************************************** + * This function clears HW semaphore bits. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - None. + * + ***************************************************************************/ +static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) +{ + uint32_t swsm; + + swsm = E1000_READ_REG(hw, SWSM); + + if (hw->mac_type == e1000_80003es2lan) + /* Release both semaphores. */ + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + else + swsm &= ~(E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, SWSM, swsm); +} + +/*************************************************************************** + * + * Using the combination of SMBI and SWESMBI semaphore bits when resetting + * adapter or Eeprom access. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_EEPROM if fail to access EEPROM. + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) +{ + int32_t timeout; + uint32_t swsm; + + if (hw->mac_type == e1000_80003es2lan) { + /* Get the SW semaphore. */ + if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + + /* Get the FW semaphore. */ + timeout = hw->eeprom.word_size + 1; + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + swsm |= E1000_SWSM_SWESMBI; + E1000_WRITE_REG(hw, SWSM, swsm); + /* if we managed to set the bit we got the semaphore. */ + swsm = E1000_READ_REG(hw, SWSM); + if (swsm & E1000_SWSM_SWESMBI) + break; + + udelay(50); + timeout--; + } + + if (!timeout) { + /* Release semaphores */ + e1000_put_hw_eeprom_semaphore(hw); + dev_dbg(hw->dev, "Driver can't access the Eeprom - " + "SWESMBI bit is set.\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; +} + +int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) +{ + uint32_t swfw_sync = 0; + uint32_t swmask = mask; + uint32_t fwmask = mask << 16; + int32_t timeout = 200; + + DEBUGFUNC(); + while (timeout) { + if (e1000_get_hw_eeprom_semaphore(hw)) + return -E1000_ERR_SWFW_SYNC; + + swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* firmware currently using resource (fwmask) */ + /* or other software thread currently using resource (swmask) */ + e1000_put_hw_eeprom_semaphore(hw); + mdelay(5); + timeout--; + } + + if (!timeout) { + dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n"); + return -E1000_ERR_SWFW_SYNC; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); + + e1000_put_hw_eeprom_semaphore(hw); + return E1000_SUCCESS; +} + +static bool e1000_is_second_port(struct e1000_hw *hw) +{ + switch (hw->mac_type) { + case e1000_80003es2lan: + case e1000_82546: + case e1000_82571: + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + return true; + /* Fallthrough */ + default: + return false; + } +} + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * edev - Struct containing variables accessed by shared code + *****************************************************************************/ +static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr) +{ + struct e1000_hw *hw = edev->priv; + uint16_t eeprom_data; + uint32_t reg_data = 0; + int i; + + DEBUGFUNC(); + + if (hw->mac_type == e1000_igb) { + /* i210 preloads MAC address into RAL/RAH registers */ + reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); + adr[0] = reg_data & 0xff; + adr[1] = (reg_data >> 8) & 0xff; + adr[2] = (reg_data >> 16) & 0xff; + adr[3] = (reg_data >> 24) & 0xff; + reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); + adr[4] = reg_data & 0xff; + adr[5] = (reg_data >> 8) & 0xff; + return 0; + } + + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) { + dev_dbg(hw->dev, "EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + adr[i] = eeprom_data & 0xff; + adr[i + 1] = (eeprom_data >> 8) & 0xff; + } + + /* Invert the last bit if this is the second device */ + if (e1000_is_second_port(hw)) + adr[5] ^= 1; + + return 0; +} + +static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr) +{ + struct e1000_hw *hw = edev->priv; + uint32_t addr_low; + uint32_t addr_high; + + DEBUGFUNC(); + + dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n"); + + addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24)); + addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV); + + E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); + E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); + + return 0; +} + +/****************************************************************************** + * Clears the VLAN filter table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void e1000_clear_vfta(struct e1000_hw *hw) +{ + uint32_t offset; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +/****************************************************************************** + * Set the mac type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int32_t e1000_set_mac_type(struct e1000_hw *hw) +{ + DEBUGFUNC(); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + switch (hw->revision_id) { + case E1000_82542_2_0_REV_ID: + hw->mac_type = e1000_82542_rev2_0; + break; + case E1000_82542_2_1_REV_ID: + hw->mac_type = e1000_82542_rev2_1; + break; + default: + /* Invalid 82542 revision ID */ + return -E1000_ERR_MAC_TYPE; + } + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + hw->mac_type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + hw->mac_type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + hw->mac_type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + hw->mac_type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + hw->mac_type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + hw->mac_type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + hw->mac_type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + hw->mac_type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + hw->mac_type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + hw->mac_type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + hw->mac_type = e1000_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: + hw->mac_type = e1000_82571; + break; + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_82572EI: + hw->mac_type = e1000_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573L: + hw->mac_type = e1000_82573; + break; + case E1000_DEV_ID_82574L: + hw->mac_type = e1000_82574; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->mac_type = e1000_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IGP_M: + hw->mac_type = e1000_ich8lan; + break; + case E1000_DEV_ID_I350_COPPER: + case E1000_DEV_ID_I210_UNPROGRAMMED: + case E1000_DEV_ID_I211_UNPROGRAMMED: + case E1000_DEV_ID_I210_COPPER: + case E1000_DEV_ID_I211_COPPER: + case E1000_DEV_ID_I210_COPPER_FLASHLESS: + case E1000_DEV_ID_I210_SERDES: + case E1000_DEV_ID_I210_SERDES_FLASHLESS: + case E1000_DEV_ID_I210_1000BASEKX: + hw->mac_type = e1000_igb; + break; + default: + /* Should never have loaded on this device */ + return -E1000_ERR_MAC_TYPE; + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void e1000_reset_hw(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t reg; + + DEBUGFUNC(); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); + pci_write_config_word(hw->pdev, PCI_COMMAND, + hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); + } + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + mdelay(10); + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + dev_dbg(hw->dev, "Issuing a global reset to MAC\n"); + ctrl = E1000_READ_REG(hw, CTRL); + + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + + /* Force a reload from the EEPROM if necessary */ + if (hw->mac_type == e1000_igb) { + mdelay(20); + reg = E1000_READ_REG(hw, STATUS); + if (reg & E1000_STATUS_PF_RST_DONE) + dev_dbg(hw->dev, "PF OK\n"); + reg = E1000_READ_REG(hw, I210_EECD); + if (reg & E1000_EECD_AUTO_RD) + dev_dbg(hw->dev, "EEC OK\n"); + } else if (hw->mac_type < e1000_82540) { + uint32_t ctrl_ext; + + /* Wait for reset to complete */ + udelay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + /* Wait for EEPROM reload */ + mdelay(2); + } else { + uint32_t manc; + + /* Wait for EEPROM reload (it happens automatically) */ + mdelay(4); + /* Dissable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(hw, MANC, manc); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + if (hw->mac_type == e1000_igb) + E1000_WRITE_REG(hw, I210_IAM, 0); + + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + E1000_READ_REG(hw, ICR); + + /* If MWI was previously enabled, reenable it. */ + if (hw->mac_type == e1000_82542_rev2_0) + pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); + + if (hw->mac_type != e1000_igb) { + if (hw->mac_type < e1000_82571) + E1000_WRITE_REG(hw, PBA, 0x00000030); + else + E1000_WRITE_REG(hw, PBA, 0x000a0026); + } +} + +/****************************************************************************** + * + * Initialize a number of hardware-dependent bits + * + * hw: Struct containing variables accessed by shared code + * + * This function contains hardware limitation workarounds for PCI-E adapters + * + *****************************************************************************/ +static void e1000_initialize_hardware_bits(struct e1000_hw *hw) +{ + uint32_t reg_ctrl, reg_ctrl_ext; + uint32_t reg_tarc0, reg_tarc1; + uint32_t reg_txdctl, reg_txdctl1; + + if (hw->mac_type < e1000_82571) + return; + + /* Settings common to all PCI-express silicon */ + + /* link autonegotiation/sync workarounds */ + reg_tarc0 = E1000_READ_REG(hw, TARC0); + reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27)); + + /* Enable not-done TX descriptor counting */ + reg_txdctl = E1000_READ_REG(hw, TXDCTL); + reg_txdctl |= E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); + + reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); + reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); + + switch (hw->mac_type) { + case e1000_82571: + case e1000_82572: + /* Clear PHY TX compatible mode bits */ + reg_tarc1 = E1000_READ_REG(hw, TARC1); + reg_tarc1 &= ~((1 << 30) | (1 << 29)); + + /* link autonegotiation/sync workarounds */ + reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23); + + /* TX ring control fixes */ + reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24); + + /* Multiple read bit is reversed polarity */ + if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) + reg_tarc1 &= ~(1 << 28); + else + reg_tarc1 |= (1 << 28); + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case e1000_82573: + case e1000_82574: + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl_ext &= ~(1 << 23); + reg_ctrl_ext |= (1 << 22); + + /* TX byte count fix */ + reg_ctrl = E1000_READ_REG(hw, CTRL); + reg_ctrl &= ~(1 << 29); + + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + E1000_WRITE_REG(hw, CTRL, reg_ctrl); + break; + case e1000_80003es2lan: + /* improve small packet performace for fiber/serdes */ + if (e1000_media_fiber_serdes(hw)) + reg_tarc0 &= ~(1 << 20); + + /* Multiple read bit is reversed polarity */ + reg_tarc1 = E1000_READ_REG(hw, TARC1); + if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) + reg_tarc1 &= ~(1 << 28); + else + reg_tarc1 |= (1 << 28); + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case e1000_ich8lan: + /* Reduce concurrent DMA requests to 3 from 4 */ + if ((hw->revision_id < 3) || + ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && + (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) + reg_tarc0 |= (1 << 29) | (1 << 28); + + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl_ext |= (1 << 22); + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + + /* workaround TX hang with TSO=on */ + reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23); + + /* Multiple read bit is reversed polarity */ + reg_tarc1 = E1000_READ_REG(hw, TARC1); + if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) + reg_tarc1 &= ~(1 << 28); + else + reg_tarc1 |= (1 << 28); + + /* workaround TX hang with TSO=on */ + reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24); + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case e1000_igb: + return; + default: + break; + } + + E1000_WRITE_REG(hw, TARC0, reg_tarc0); +} + +static int e1000_open(struct eth_device *edev) +{ + struct e1000_hw *hw = edev->priv; + uint32_t ctrl_ext; + int32_t ret_val; + uint32_t ctrl; + uint32_t reg_data; + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = e1000_setup_link(hw); + if (ret_val) + return ret_val; + + /* Set the transmit descriptor write-back policy */ + if (hw->mac_type > e1000_82544) { + ctrl = E1000_READ_REG(hw, TXDCTL); + ctrl &= ~E1000_TXDCTL_WTHRESH; + ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL, ctrl); + } + + /* Set the receive descriptor write back policy */ + if (hw->mac_type >= e1000_82571) { + ctrl = E1000_READ_REG(hw, RXDCTL); + ctrl &= ~E1000_RXDCTL_WTHRESH; + ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB; + E1000_WRITE_REG(hw, RXDCTL, ctrl); + } + + switch (hw->mac_type) { + case e1000_80003es2lan: + /* Enable retransmit on late collisions */ + reg_data = E1000_READ_REG(hw, TCTL); + reg_data |= E1000_TCTL_RTLC; + E1000_WRITE_REG(hw, TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = E1000_READ_REG(hw, TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; + E1000_WRITE_REG(hw, TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = E1000_READ_REG(hw, TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); + /* Fall through */ + case e1000_82571: + case e1000_82572: + case e1000_ich8lan: + ctrl = E1000_READ_REG(hw, TXDCTL1); + ctrl &= ~E1000_TXDCTL_WTHRESH; + ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL1, ctrl); + break; + case e1000_82573: + case e1000_82574: + reg_data = E1000_READ_REG(hw, GCR); + reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, GCR, reg_data); + case e1000_igb: + default: + break; + } + + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || + hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + /* Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return 0; +} + +/****************************************************************************** + * Configures flow control and link settings. + * + * hw - Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + *****************************************************************************/ +static int e1000_setup_link(struct e1000_hw *hw) +{ + int32_t ret_val; + uint32_t ctrl_ext; + uint16_t eeprom_data; + + DEBUGFUNC(); + + /* In the case of the phy reset being blocked, we already have a link. + * We do not have to set it up again. */ + if (e1000_check_phy_reset_block(hw)) + return E1000_SUCCESS; + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, + &eeprom_data) < 0) { + dev_dbg(hw->dev, "EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + switch (hw->mac_type) { + case e1000_ich8lan: + case e1000_82573: + case e1000_82574: + case e1000_igb: + hw->fc = e1000_fc_full; + break; + default: + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); + if (ret_val) { + dev_dbg(hw->dev, "EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = e1000_fc_none; + else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR) + hw->fc = e1000_fc_tx_pause; + else + hw->fc = e1000_fc_full; + break; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if (hw->mac_type == e1000_82542_rev2_0) + hw->fc &= ~e1000_fc_tx_pause; + + hw->original_fc = hw->fc; + + dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before e1000_setup_pcs_link() + * or e1000_phy_setup() is called. + */ + if (hw->mac_type == e1000_82543) { + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + if (e1000_media_fiber(hw)) + ret_val = e1000_setup_fiber_link(hw); + else + ret_val = e1000_setup_copper_link(hw); + + if (ret_val < 0) + return ret_val; + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n"); + + /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ + if (hw->mac_type != e1000_ich8lan) { + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + } + + E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if (hw->fc & e1000_fc_tx_pause) { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE); + E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH); + } else { + E1000_WRITE_REG(hw, FCRTL, 0); + E1000_WRITE_REG(hw, FCRTH, 0); + } + + return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based adapter + * + * hw - Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int e1000_setup_fiber_link(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t status; + uint32_t txcw = 0; + uint32_t i; + uint32_t signal; + + DEBUGFUNC(); + + /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal + */ + ctrl = E1000_READ_REG(hw, CTRL); + if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) + signal = E1000_CTRL_SWDPIN1; + else + signal = 0; + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case e1000_fc_none: + /* Flow control is completely disabled by a software over-ride. */ + txcw = E1000_TXCW_ANE | E1000_TXCW_FD; + break; + case e1000_fc_rx_pause: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; + break; + case e1000_fc_tx_pause: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR; + break; + case e1000_fc_full: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; + break; + default: + dev_dbg(hw->dev, "Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-neogtiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw); + + E1000_WRITE_REG(hw, TXCW, txcw); + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + mdelay(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + */ + if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { + dev_dbg(hw->dev, "Looking for Link\n"); + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + mdelay(10); + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == (LINK_UP_TIMEOUT / 10)) { + /* AutoNeg failed to achieve a link, so we'll call + * e1000_check_for_link. This routine will force the link up if we + * detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + return -E1000_ERR_NOLINK; + } else { + hw->autoneg_failed = 0; + dev_dbg(hw->dev, "Valid Link Found\n"); + } + } else { + dev_dbg(hw->dev, "No Signal Detected\n"); + return -E1000_ERR_NOLINK; + } + return 0; +} + +/****************************************************************************** +* Make sure we have a valid PHY and change PHY mode before link setup. +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC(); + + ctrl = E1000_READ_REG(hw, CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if (hw->mac_type > e1000_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX + | E1000_CTRL_SLU); + E1000_WRITE_REG(hw, CTRL, ctrl); + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + + /* Make sure we have a valid PHY */ + ret_val = e1000_detect_gig_phy(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error, did not detect valid phy.\n"); + return ret_val; + } + dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id); + + /* Set PHY to class A mode (if necessary) */ + ret_val = e1000_set_phy_mode(hw); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82545_rev_3) || + (hw->mac_type == e1000_82546_rev_3)) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + phy_data |= 0x00000008; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * This function sets the lplu state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisment + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * hw: Struct containing variables accessed by shared code + * active - true to enable lplu false to disable lplu. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw) +{ + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC(); + + /* During driver activity LPLU should not be used or it will attain link + * from the lowest speeds starting from 10Mbps. The capability is used + * for Dx transitions and states */ + if (hw->mac_type == e1000_82541_rev_2 + || hw->mac_type == e1000_82547_rev_2) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, + &phy_data); + if (ret_val) + return ret_val; + } else if (hw->mac_type == e1000_ich8lan) { + /* MAC writes into PHY register based on the state transition + * and start auto-negotiation. SW driver can overwrite the + * settings in CSR PHY power control E1000_PHY_CTRL register. */ + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { + ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); + if (ret_val) + return ret_val; + } + + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); + if (ret_val) + return ret_val; + } else { + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = e1000_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * This function sets the lplu d0 state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisment + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * hw: Struct containing variables accessed by shared code + * active - true to enable lplu false to disable lplu. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw) +{ + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC(); + + if (hw->mac_type <= e1000_82547_rev_2) + return E1000_SUCCESS; + + if (hw->mac_type == e1000_ich8lan) { + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else if (hw->mac_type == e1000_igb) { + phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); + } else { + ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP02E1000_PM_D0_LPLU; + + ret_val = e1000_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/******************************************************************** +* Copper link setup for e1000_phy_igp series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw) +{ + uint32_t led_ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC(); + + ret_val = e1000_phy_reset(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Resetting the PHY\n"); + return ret_val; + } + + /* Wait 15ms for MAC to configure PHY from eeprom settings */ + mdelay(15); + if (hw->mac_type != e1000_ich8lan) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ + if (hw->phy_type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = e1000_set_d3_lplu_state_off(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* disable lplu d0 during driver init */ + ret_val = e1000_set_d0_lplu_state_off(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Disabling LPLU D0\n"); + return ret_val; + } + + /* Configure mdi-mdix settings */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX + | IGP01E1000_PSCR_FORCE_MDI_MDIX); + } else { + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + } + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + /* when autonegotiation advertisment is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. */ + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = e1000_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1000_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, + &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/***************************************************************************** + * This function checks the mode of the firmware. + * + * returns - true when the mode is IAMT or false. + ****************************************************************************/ +static bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + uint32_t fwsm; + + DEBUGFUNC(); + + fwsm = E1000_READ_REG(hw, FWSM); + + if (hw->mac_type == e1000_ich8lan) { + if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return true; + } else if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return true; + + return false; +} + +static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) +{ + uint16_t swfw = E1000_SWFW_PHY0_SM; + uint32_t reg_val; + DEBUGFUNC(); + + if (e1000_is_second_port(hw)) + swfw = E1000_SWFW_PHY1_SM; + + if (e1000_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) + & E1000_KUMCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + udelay(2); + + return E1000_SUCCESS; +} + +static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) +{ + uint16_t swfw = E1000_SWFW_PHY0_SM; + uint32_t reg_val; + DEBUGFUNC(); + + if (e1000_is_second_port(hw)) + swfw = E1000_SWFW_PHY1_SM; + + if (e1000_swfw_sync_acquire(hw, swfw)) { + debug("%s[%i]\n", __func__, __LINE__); + return -E1000_ERR_SWFW_SYNC; + } + + /* Write register address */ + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & + E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + udelay(2); + + /* Read the data returned */ + reg_val = E1000_READ_REG(hw, KUMCTRLSTA); + *data = (uint16_t)reg_val; + + return E1000_SUCCESS; +} + +/******************************************************************** +* Copper link setup for e1000_phy_gg82563 series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + uint32_t reg_data; + + DEBUGFUNC(); + + /* Enable CRS on TX for half-duplex operation. */ + ret_val = e1000_read_phy_reg(hw, + GG82563_PHY_MAC_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ + phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; + + ret_val = e1000_write_phy_reg(hw, + GG82563_PHY_MAC_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Resetting the PHY\n"); + return ret_val; + } + + /* Bypass RX and TX FIFO's */ + ret_val = e1000_write_kmrn_reg(hw, + E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS + | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); + if (ret_val) + return ret_val; + + reg_data = E1000_READ_REG(hw, CTRL_EXT); + reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); + E1000_WRITE_REG(hw, CTRL_EXT, reg_data); + + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Do not init these registers when the HW is in IAMT mode, since the + * firmware will have already initialized them. We only initialize + * them if the HW is not in IAMT mode. + */ + if (e1000_check_mng_mode(hw) == false) { + /* Enable Electrical Idle on the PHY */ + phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = e1000_write_phy_reg(hw, + GG82563_PHY_PWR_MGMT_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = e1000_write_phy_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, phy_data); + + if (ret_val) + return ret_val; + } + + /* Workaround: Disable padding in Kumeran interface in the MAC + * and in the PHY to avoid CRC errors. + */ + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data); + if (ret_val) + return ret_val; + phy_data |= GG82563_ICR_DIS_PADDING; + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/******************************************************************** +* Copper link setup for e1000_phy_m88 series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC(); + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = e1000_read_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK + | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X + | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Resetting the PHY\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/******************************************************************** +* Setup auto-negotiation and flow control advertisements, +* and then perform auto-negotiation. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC(); + + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* IFE phy only supports 10/100 */ + if (hw->phy_type == e1000_phy_ife) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + + dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n"); + return ret_val; + } + dev_dbg(hw->dev, "Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Config the MAC and the PHY after link is up. +* 1) Set up the MAC to the current PHY speed/duplex +* if we are on 82543. If we +* are on newer silicon, we only need to configure +* collision distance in the Transmit Control Register. +* 2) Set up flow control on the MAC to that established with +* the link partner. +* 3) Config DSP to improve Gigabit link quality for some PHY revisions. +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw) +{ + int32_t ret_val; + DEBUGFUNC(); + + if (hw->mac_type >= e1000_82544) { + e1000_config_collision_dist(hw); + } else { + ret_val = e1000_config_mac_to_phy(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + dev_dbg(hw->dev, "Error Configuring Flow Control\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Detects which PHY is present and setup the speed and duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int e1000_setup_copper_link(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + uint16_t reg_data; + + DEBUGFUNC(); + + switch (hw->mac_type) { + case e1000_80003es2lan: + case e1000_ich8lan: + /* Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. */ + ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); + if (ret_val) + return ret_val; + + ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); + if (ret_val) + return ret_val; + + reg_data |= 0x3F; + + ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); + if (ret_val) + return ret_val; + default: + break; + } + + /* Check if it is a valid PHY and set PHY mode if necessary. */ + ret_val = e1000_copper_link_preconfig(hw); + if (ret_val) + return ret_val; + + switch (hw->mac_type) { + case e1000_80003es2lan: + /* Kumeran registers are written-only */ + reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; + reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, + reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 || + hw->phy_type == e1000_phy_igp_2) { + ret_val = e1000_copper_link_igp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) { + ret_val = e1000_copper_link_mgp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == e1000_phy_gg82563) { + ret_val = e1000_copper_link_ggp_setup(hw); + if (ret_val) + return ret_val; + } + + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for (i = 0; i < 10; i++) { + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + /* Config the MAC and PHY after link is up */ + ret_val = e1000_copper_link_postconfig(hw); + if (ret_val) + return ret_val; + + dev_dbg(hw->dev, "Valid link established!!!\n"); + return E1000_SUCCESS; + } + udelay(10); + } + + dev_dbg(hw->dev, "Unable to establish link!!!\n"); + return E1000_SUCCESS; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t mii_autoneg_adv_reg; + uint16_t mii_1000t_ctrl_reg; + + DEBUGFUNC(); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (hw->phy_type != e1000_phy_ife) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } else + mii_1000t_ctrl_reg = 0; + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + dev_dbg(hw->dev, "Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + dev_dbg(hw->dev, "Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + dev_dbg(hw->dev, "Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + dev_dbg(hw->dev, "Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + pr_debug + ("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case e1000_fc_none: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + dev_dbg(hw->dev, "Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (hw->phy_type != e1000_phy_ife) { + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +static void e1000_config_collision_dist(struct e1000_hw *hw) +{ + uint32_t tctl, coll_dist; + + DEBUGFUNC(); + + if (hw->mac_type < e1000_82543) + coll_dist = E1000_COLLISION_DISTANCE_82542; + else + coll_dist = E1000_COLLISION_DISTANCE; + + tctl = E1000_READ_REG(hw, TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= coll_dist << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int e1000_config_mac_to_phy(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint16_t phy_data; + + DEBUGFUNC(); + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_ILOS); + ctrl |= (E1000_CTRL_SPD_SEL); + + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { + dev_dbg(hw->dev, "PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + e1000_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + return 0; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + * + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +static int e1000_force_mac_fc(struct e1000_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC(); + + /* Get the current configuration of the Device Control Register */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + dev_dbg(hw->dev, "Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if (hw->mac_type == e1000_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + E1000_WRITE_REG(hw, CTRL, ctrl); + return 0; +} + +/****************************************************************************** + * Configures flow control settings after link is established + * + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t mii_nway_adv_reg; + uint16_t mii_nway_lp_ability_reg; + uint16_t speed; + uint16_t duplex; + + DEBUGFUNC(); + + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + dev_dbg(hw->dev, "PHY Read Error \n"); + return -E1000_ERR_PHY; + } + + if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + dev_dbg(hw->dev, "PHY Read Error \n"); + return -E1000_ERR_PHY; + } + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n"); + return 0; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { + dev_dbg(hw->dev, "PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) { + dev_dbg(hw->dev, "PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->original_fc == e1000_fc_full) { + hw->fc = e1000_fc_full; + dev_dbg(hw->dev, "Flow Control = FULL.\r\n"); + } else { + hw->fc = e1000_fc_rx_pause; + dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = e1000_fc_tx_pause; + dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = e1000_fc_rx_pause; + dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if (hw->original_fc == e1000_fc_none || + hw->original_fc == e1000_fc_tx_pause) { + hw->fc = e1000_fc_none; + dev_dbg(hw->dev, "Flow Control = NONE.\r\n"); + } else { + hw->fc = e1000_fc_rx_pause; + dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); + } + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (duplex == HALF_DUPLEX) + hw->fc = e1000_fc_none; + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc(hw); + if (ret_val < 0) { + dev_dbg(hw->dev, "Error forcing flow control settings\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Configure the MAC-to-PHY interface for 10/100Mbps +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) +{ + int32_t ret_val = E1000_SUCCESS; + uint32_t tipg; + uint16_t reg_data; + + DEBUGFUNC(); + + reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = e1000_write_kmrn_reg(hw, + E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; + E1000_WRITE_REG(hw, TIPG, tipg); + + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + + return ret_val; +} + +static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw) +{ + int32_t ret_val = E1000_SUCCESS; + uint16_t reg_data; + uint32_t tipg; + + DEBUGFUNC(); + + reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = e1000_write_kmrn_reg(hw, + E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, tipg); + + ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + + return ret_val; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, + uint16_t *duplex) +{ + uint32_t status; + int32_t ret_val; + + DEBUGFUNC(); + + if (hw->mac_type >= e1000_82543) { + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + dev_dbg(hw->dev, "1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + dev_dbg(hw->dev, "100 Mbs, "); + } else { + *speed = SPEED_10; + dev_dbg(hw->dev, "10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + dev_dbg(hw->dev, "Full Duplex\r\n"); + } else { + *duplex = HALF_DUPLEX; + dev_dbg(hw->dev, " Half Duplex\r\n"); + } + } else { + dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + + if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) { + if (*speed == SPEED_1000) + ret_val = e1000_configure_kmrn_for_1000(hw); + else + ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int e1000_wait_autoneg(struct e1000_hw *hw) +{ + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC(); + dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + dev_dbg(hw->dev, "PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + dev_dbg(hw->dev, "PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if (phy_data & MII_SR_AUTONEG_COMPLETE) { + dev_dbg(hw->dev, "Auto-Neg complete.\n"); + return 0; + } + mdelay(100); + } + dev_dbg(hw->dev, "Auto-Neg timedout.\n"); + return -E1000_ERR_TIMEOUT; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 2 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + udelay(2); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 2 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + udelay(2); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, + uint16_t count) +{ + uint32_t ctrl; + uint32_t mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + udelay(2); + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order. +******************************************************************************/ +static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint16_t data = 0; + uint8_t i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data = data << 1; + e1000_raise_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk(hw, &ctrl); + } + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + return data; +} + +static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr) +{ + struct e1000_hw *hw = bus->priv; + uint32_t i; + uint32_t mdic = 0; + + if (phy_addr != 1) + return -EIO; + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 64; i++) { + udelay(10); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + dev_dbg(hw->dev, "MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + dev_dbg(hw->dev, "MDI Error\n"); + return -E1000_ERR_PHY; + } + return mdic; + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + return e1000_shift_in_mdi_bits(hw); + } +} + +/***************************************************************************** +* Reads the value from a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, + uint16_t *phy_data) +{ + int ret; + + ret = e1000_phy_read(&hw->miibus, 1, reg_addr); + if (ret < 0) + return ret; + + *phy_data = ret; + + return 0; +} + +static int e1000_phy_write(struct mii_bus *bus, int phy_addr, + int reg_addr, u16 phy_data) +{ + struct e1000_hw *hw = bus->priv; + uint32_t i; + uint32_t mdic = 0; + + if (phy_addr != 1) + return -EIO; + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, register address, and data intended + * for the PHY register in the MDI Control register. The MAC will take + * care of interfacing with the PHY to send the desired data. + */ + mdic = (((uint32_t) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 64; i++) { + udelay(10); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + dev_dbg(hw->dev, "MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * . + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (uint32_t) phy_data; + + e1000_shift_out_mdi_bits(hw, mdic, 32); + } + return 0; +} + +/****************************************************************************** + * Writes a value to a PHY register + * + * hw - Struct containing variables accessed by shared code + * reg_addr - address of the PHY register to write + * data - data to write to the PHY + ******************************************************************************/ +static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) +{ + return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data); +} + +/****************************************************************************** + * Checks if PHY reset is blocked due to SOL/IDER session, for example. + * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to + * the caller to figure out how to deal with it. + * + * hw - Struct containing variables accessed by shared code + * + * returns: - E1000_BLK_PHY_RESET + * E1000_SUCCESS + * + *****************************************************************************/ +static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw) +{ + if (hw->mac_type == e1000_ich8lan) { + if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY) + return E1000_SUCCESS; + else + return E1000_BLK_PHY_RESET; + } + + if (hw->mac_type > e1000_82547_rev_2) { + if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE) + return E1000_BLK_PHY_RESET; + else + return E1000_SUCCESS; + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * Checks if the PHY configuration is done + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_RESET if fail to reset MAC + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; + + DEBUGFUNC(); + + switch (hw->mac_type) { + default: + mdelay(10); + break; + + case e1000_80003es2lan: + /* Separate *_CFG_DONE_* bit for each port */ + if (e1000_is_second_port(hw)) + cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; + /* Fall Through */ + + case e1000_82571: + case e1000_82572: + case e1000_igb: + while (timeout) { + if (hw->mac_type == e1000_igb) { + if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) + break; + } else { + if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) + break; + } + mdelay(1); + timeout--; + } + if (!timeout) { + dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + break; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_phy_hw_reset(struct e1000_hw *hw) +{ + uint16_t swfw = E1000_SWFW_PHY0_SM; + uint32_t ctrl, ctrl_ext; + uint32_t led_ctrl; + int32_t ret_val; + + DEBUGFUNC(); + + /* In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. */ + ret_val = e1000_check_phy_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + + dev_dbg(hw->dev, "Resetting Phy...\n"); + + if (hw->mac_type > e1000_82543) { + if (e1000_is_second_port(hw)) + swfw = E1000_SWFW_PHY1_SM; + + if (e1000_swfw_sync_acquire(hw, swfw)) { + dev_dbg(hw->dev, "Unable to acquire swfw sync\n"); + return -E1000_ERR_SWFW_SYNC; + } + + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + */ + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + udelay(100); + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + if (hw->mac_type >= e1000_82571) + mdelay(10); + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + mdelay(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + udelay(150); + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* Wait for FW to finish PHY configuration. */ + return e1000_get_phy_cfg_done(hw); +} + +/****************************************************************************** + * IGP phy init script - initializes the GbE PHY + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void e1000_phy_init_script(struct e1000_hw *hw) +{ + uint32_t ret_val; + uint16_t phy_saved_data; + + DEBUGFUNC(); + + switch (hw->mac_type) { + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + break; + default: + return; + } + + mdelay(20); + + /* Save off the current value of register 0x2F5B to be + * restored at the end of this routine. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + mdelay(20); + + e1000_write_phy_reg(hw, 0x0000, 0x0140); + + mdelay(5); + + switch (hw->mac_type) { + case e1000_82541: + case e1000_82547: + e1000_write_phy_reg(hw, 0x1F95, 0x0001); + + e1000_write_phy_reg(hw, 0x1F71, 0xBD21); + + e1000_write_phy_reg(hw, 0x1F79, 0x0018); + + e1000_write_phy_reg(hw, 0x1F30, 0x1600); + + e1000_write_phy_reg(hw, 0x1F31, 0x0014); + + e1000_write_phy_reg(hw, 0x1F32, 0x161C); + + e1000_write_phy_reg(hw, 0x1F94, 0x0003); + + e1000_write_phy_reg(hw, 0x1F96, 0x003F); + + e1000_write_phy_reg(hw, 0x2010, 0x0008); + break; + + case e1000_82541_rev_2: + case e1000_82547_rev_2: + e1000_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + e1000_write_phy_reg(hw, 0x0000, 0x3300); + + mdelay(20); + + /* Now enable the transmitter */ + if (!ret_val) + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac_type == e1000_82547) { + uint16_t fused, fine, coarse; + + /* Move to analog registers page */ + e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= + IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse + == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); + e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control register +******************************************************************************/ +static int32_t e1000_phy_reset(struct e1000_hw *hw) +{ + uint16_t phy_data; + int ret; + + DEBUGFUNC(); + + /* + * In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. + */ + if (e1000_check_phy_reset_block(hw)) + return E1000_SUCCESS; + + switch (hw->phy_type) { + case e1000_phy_igp: + case e1000_phy_igp_2: + case e1000_phy_igp_3: + case e1000_phy_ife: + case e1000_phy_igb: + ret = e1000_phy_hw_reset(hw); + if (ret) + return ret; + break; + default: + ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret) + return ret; + + phy_data |= MII_CR_RESET; + ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret) + return ret; + + udelay(1); + break; + } + + if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) + e1000_phy_init_script(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t e1000_detect_gig_phy(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_id_high, phy_id_low; + e1000_phy_type phy_type = e1000_phy_undefined; + + DEBUGFUNC(); + + /* The 82571 firmware may still be configuring the PHY. In this + * case, we cannot access the PHY until the configuration is done. So + * we explicitly set the PHY values. */ + if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { + hw->phy_id = IGP01E1000_I_PHY_ID; + hw->phy_type = e1000_phy_igp_2; + return E1000_SUCCESS; + } + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if (ret_val) + return ret_val; + + hw->phy_id = (uint32_t) (phy_id_high << 16); + udelay(20); + ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if (ret_val) + return ret_val; + + hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; + + switch (hw->mac_type) { + case e1000_82543: + if (hw->phy_id == M88E1000_E_PHY_ID) + phy_type = e1000_phy_m88; + break; + case e1000_82544: + if (hw->phy_id == M88E1000_I_PHY_ID) + phy_type = e1000_phy_m88; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (hw->phy_id == M88E1011_I_PHY_ID) + phy_type = e1000_phy_m88; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (hw->phy_id == IGP01E1000_I_PHY_ID) + phy_type = e1000_phy_igp; + + break; + case e1000_82573: + if (hw->phy_id == M88E1111_I_PHY_ID) + phy_type = e1000_phy_m88; + break; + case e1000_82574: + if (hw->phy_id == BME1000_E_PHY_ID) + phy_type = e1000_phy_bm; + break; + case e1000_80003es2lan: + if (hw->phy_id == GG82563_E_PHY_ID) + phy_type = e1000_phy_gg82563; + break; + case e1000_ich8lan: + if (hw->phy_id == IGP03E1000_E_PHY_ID) + phy_type = e1000_phy_igp_3; + if (hw->phy_id == IFE_E_PHY_ID) + phy_type = e1000_phy_ife; + if (hw->phy_id == IFE_PLUS_E_PHY_ID) + phy_type = e1000_phy_ife; + if (hw->phy_id == IFE_C_E_PHY_ID) + phy_type = e1000_phy_ife; + break; + case e1000_igb: + if (hw->phy_id == I210_I_PHY_ID) + phy_type = e1000_phy_igb; + if (hw->phy_id == I350_I_PHY_ID) + phy_type = e1000_phy_igb; + break; + default: + dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + + if (!phy_type == e1000_phy_undefined) { + dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id); + return -EINVAL; + } + + hw->phy_type = phy_type; + + return 0; +} + +/***************************************************************************** + * Set media type and TBI compatibility. + * + * hw - Struct containing variables accessed by shared code + * **************************************************************************/ +static void e1000_set_media_type(struct e1000_hw *hw) +{ + DEBUGFUNC(); + + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->media_type = e1000_media_type_internal_serdes; + return; + default: + break; + } + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->media_type = e1000_media_type_fiber; + return; + case e1000_ich8lan: + case e1000_82573: + case e1000_82574: + case e1000_igb: + /* The STATUS_TBIMODE bit is reserved or reused + * for the this device. + */ + hw->media_type = e1000_media_type_copper; + return; + default: + break; + } + + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE) + hw->media_type = e1000_media_type_fiber; + else + hw->media_type = e1000_media_type_copper; +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ + +static int e1000_sw_init(struct eth_device *edev) +{ + struct e1000_hw *hw = edev->priv; + int result; + + /* PCI config space info */ + pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); + pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); + pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); + pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); + + /* identify the MAC */ + result = e1000_set_mac_type(hw); + if (result) { + dev_err(&hw->edev.dev, "Unknown MAC Type\n"); + return result; + } + + return E1000_SUCCESS; +} + +static void fill_rx(struct e1000_hw *hw) +{ + volatile struct e1000_rx_desc *rd; + volatile u32 *bla; + int i; + + hw->rx_last = hw->rx_tail; + rd = hw->rx_base + hw->rx_tail; + hw->rx_tail = (hw->rx_tail + 1) % 8; + + bla = (void *)rd; + for (i = 0; i < 4; i++) + *bla++ = 0; + + rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet); + + E1000_WRITE_REG(hw, RDT, hw->rx_tail); +} + +/** + * e1000_configure_tx - Configure 8254x Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ + +static void e1000_configure_tx(struct e1000_hw *hw) +{ + unsigned long tctl; + unsigned long tipg, tarc; + uint32_t ipgr1, ipgr2; + + E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base); + E1000_WRITE_REG(hw, TDBAH, 0); + + E1000_WRITE_REG(hw, TDLEN, 128); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG(hw, TDH, 0); + E1000_WRITE_REG(hw, TDT, 0); + hw->tx_tail = 0; + + /* Set the default values for the Tx Inter Packet Gap timer */ + if (hw->mac_type <= e1000_82547_rev_2 && + (hw->media_type == e1000_media_type_fiber || + hw->media_type == e1000_media_type_internal_serdes)) + tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + + /* Set the default values for the Tx Inter Packet Gap timer */ + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + tipg = DEFAULT_82542_TIPG_IPGT; + ipgr1 = DEFAULT_82542_TIPG_IPGR1; + ipgr2 = DEFAULT_82542_TIPG_IPGR2; + break; + case e1000_80003es2lan: + ipgr1 = DEFAULT_82543_TIPG_IPGR1; + ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; + break; + default: + ipgr1 = DEFAULT_82543_TIPG_IPGR1; + ipgr2 = DEFAULT_82543_TIPG_IPGR2; + break; + } + tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; + E1000_WRITE_REG(hw, TIPG, tipg); + /* Program the Transmit Control Register */ + tctl = E1000_READ_REG(hw, TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); + + if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { + tarc = E1000_READ_REG(hw, TARC0); + /* set the speed mode bit, we'll clear it if we're not at + * gigabit link later */ + /* git bit can be set to 1*/ + } else if (hw->mac_type == e1000_80003es2lan) { + tarc = E1000_READ_REG(hw, TARC0); + tarc |= 1; + E1000_WRITE_REG(hw, TARC0, tarc); + tarc = E1000_READ_REG(hw, TARC1); + tarc |= 1; + E1000_WRITE_REG(hw, TARC1, tarc); + } + + + e1000_config_collision_dist(hw); + /* Setup Transmit Descriptor Settings for eop descriptor */ + hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; + + /* Need to set up RS bit */ + if (hw->mac_type < e1000_82543) + hw->txd_cmd |= E1000_TXD_CMD_RPS; + else + hw->txd_cmd |= E1000_TXD_CMD_RS; + + + if (hw->mac_type == e1000_igb) { + uint32_t reg_txdctl; + + E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); + + reg_txdctl = E1000_READ_REG(hw, TXDCTL); + reg_txdctl |= 1 << 25; + E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); + mdelay(20); + } + + E1000_WRITE_REG(hw, TCTL, tctl); +} + +/** + * e1000_setup_rctl - configure the receive control register + * @adapter: Board private structure + **/ +static void e1000_setup_rctl(struct e1000_hw *hw) +{ + uint32_t rctl; + + rctl = E1000_READ_REG(hw, RCTL); + + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO + | E1000_RCTL_RDMTS_HALF; /* | + (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ + + rctl &= ~E1000_RCTL_SBP; + + rctl &= ~(E1000_RCTL_SZ_4096); + rctl |= E1000_RCTL_SZ_2048; + rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); + E1000_WRITE_REG(hw, RCTL, rctl); +} + +/** + * e1000_configure_rx - Configure 8254x Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void e1000_configure_rx(struct e1000_hw *hw) +{ + unsigned long rctl, ctrl_ext; + + hw->rx_tail = 0; + /* make sure receives are disabled while setting up the descriptors */ + rctl = E1000_READ_REG(hw, RCTL); + E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); + if (hw->mac_type >= e1000_82540) { + /* Set the interrupt throttling rate. Value is calculated + * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ +#define MAX_INTS_PER_SEC 8000 +#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) + E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); + } + + if (hw->mac_type >= e1000_82571) { + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + /* Reset delay timers after every interrupt */ + ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + /* Setup the Base and Length of the Rx Descriptor Ring */ + E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base); + E1000_WRITE_REG(hw, RDBAH, 0); + + E1000_WRITE_REG(hw, RDLEN, 128); + + /* Setup the HW Rx Head and Tail Descriptor Pointers */ + E1000_WRITE_REG(hw, RDH, 0); + E1000_WRITE_REG(hw, RDT, 0); + /* Enable Receives */ + + if (hw->mac_type == e1000_igb) { + uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); + reg_rxdctl |= 1 << 25; + E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); + mdelay(20); + } + + E1000_WRITE_REG(hw, RCTL, rctl); + + fill_rx(hw); +} + +static int e1000_poll(struct eth_device *edev) +{ + struct e1000_hw *hw = edev->priv; + volatile struct e1000_rx_desc *rd; + uint32_t len; + + rd = hw->rx_base + hw->rx_last; + + if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) + return 0; + + len = le32_to_cpu(rd->length); + + dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE); + + net_receive(edev, (uchar *)hw->packet, len); + fill_rx(hw); + return 1; +} + +static int e1000_transmit(struct eth_device *edev, void *txpacket, int length) +{ + void *nv_packet = (void *)txpacket; + struct e1000_hw *hw = edev->priv; + volatile struct e1000_tx_desc *txp; + uint64_t to; + + txp = hw->tx_base + hw->tx_tail; + hw->tx_tail = (hw->tx_tail + 1) % 8; + + txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); + txp->lower.data = cpu_to_le32(hw->txd_cmd | length); + txp->upper.data = 0; + + dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE); + + E1000_WRITE_REG(hw, TDT, hw->tx_tail); + + E1000_WRITE_FLUSH(hw); + + to = get_time_ns(); + while (1) { + if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) + break; + if (is_timeout(to, MSECOND)) { + dev_dbg(hw->dev, "e1000: tx timeout\n"); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void e1000_disable(struct eth_device *edev) +{ + struct e1000_hw *hw = edev->priv; + + /* Turn off the ethernet interface */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, 0); + + /* Clear the transmit ring */ + E1000_WRITE_REG(hw, TDH, 0); + E1000_WRITE_REG(hw, TDT, 0); + + /* Clear the receive ring */ + E1000_WRITE_REG(hw, RDH, 0); + E1000_WRITE_REG(hw, RDT, 0); + + mdelay(10); +} + +static int e1000_init(struct eth_device *edev) +{ + struct e1000_hw *hw = edev->priv; + uint32_t i; + uint32_t mta_size; + uint32_t reg_data; + + DEBUGFUNC(); + + if (hw->mac_type >= e1000_82544) + E1000_WRITE_REG(hw, WUC, 0); + + /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ + if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) || + ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && + (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~0x80000000; + E1000_WRITE_REG(hw, STATUS, reg_data); + } + + /* Set the media type and TBI compatibility */ + e1000_set_media_type(hw); + + /* Must be called after e1000_set_media_type + * because media_type is used */ + e1000_initialize_hardware_bits(hw); + + /* Disabling VLAN filtering. */ + /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ + if (hw->mac_type != e1000_ich8lan) { + if (hw->mac_type < e1000_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + e1000_clear_vfta(hw); + } + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); + pci_write_config_word(hw->pdev, PCI_COMMAND, + hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); + E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + mdelay(5); + } + + for (i = 1; i < E1000_RAR_ENTRIES; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->mac_type == e1000_82542_rev2_0) { + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_FLUSH(hw); + mdelay(1); + pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); + } + + /* Zero out the Multicast HASH table */ + mta_size = E1000_MC_TBL_SIZE; + if (hw->mac_type == e1000_ich8lan) + mta_size = E1000_MC_TBL_SIZE_ICH8LAN; + + for (i = 0; i < mta_size; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occuring when accessing our register space */ + E1000_WRITE_FLUSH(hw); + } + + /* More time needed for PHY to initialize */ + if (hw->mac_type == e1000_ich8lan) + mdelay(15); + if (hw->mac_type == e1000_igb) + mdelay(15); + + e1000_configure_tx(hw); + e1000_configure_rx(hw); + e1000_setup_rctl(hw); + + return 0; +} + +static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id) +{ + struct e1000_hw *hw; + struct eth_device *edev; + int ret; + + pci_enable_device(pdev); + pci_set_master(pdev); + + hw = xzalloc(sizeof(*hw)); + + hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN); + hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN); + hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN); + + edev = &hw->edev; + + hw->pdev = pdev; + hw->dev = &pdev->dev; + pdev->dev.priv = hw; + edev->priv = hw; + + hw->hw_addr = pci_iomap(pdev, 0); + + /* MAC and Phy settings */ + if (e1000_sw_init(edev) < 0) { + dev_err(&pdev->dev, "Software init failed\n"); + return -EINVAL; + } + + if (e1000_check_phy_reset_block(hw)) + dev_err(&pdev->dev, "PHY Reset is blocked!\n"); + + /* Basic init was OK, reset the hardware and allow SPI access */ + e1000_reset_hw(hw); + + /* Validate the EEPROM and get chipset information */ + if (e1000_init_eeprom_params(hw)) { + dev_err(&pdev->dev, "EEPROM is invalid!\n"); + return -EINVAL; + } + if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && + e1000_validate_eeprom_checksum(hw)) + return -EINVAL; + + e1000_get_ethaddr(edev, edev->ethaddr); + + /* Set up the function pointers and register the device */ + edev->init = e1000_init; + edev->recv = e1000_poll; + edev->send = e1000_transmit; + edev->halt = e1000_disable; + edev->open = e1000_open; + edev->get_ethaddr = e1000_get_ethaddr; + edev->set_ethaddr = e1000_set_ethaddr; + + hw->miibus.read = e1000_phy_read; + hw->miibus.write = e1000_phy_write; + hw->miibus.priv = hw; + hw->miibus.parent = &edev->dev; + + ret = eth_register(edev); + if (ret) + return ret; + + /* + * The e1000 driver does its own phy handling, but registering + * the phy allows to show the phy registers for debugging purposes. + */ + ret = mdiobus_register(&hw->miibus); + if (ret) + return ret; + + return 0; +} + +static void e1000_remove(struct pci_dev *pdev) +{ + struct e1000_hw *hw = pdev->dev.priv; + + e1000_disable(&hw->edev); +} + +static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), }, + /* E1000 PCIe card */ + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), }, + { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), }, + { /* sentinel */ } +}; + +static struct pci_driver e1000_eth_driver = { + .name = "e1000", + .id_table = e1000_pci_tbl, + .probe = e1000_probe, + .remove = e1000_remove, +}; + +static int e1000_driver_init(void) +{ + return pci_register_driver(&e1000_eth_driver); +} +device_initcall(e1000_driver_init); -- 2.5.5 _______________________________________________ barebox mailing list barebox@lists.infradead.org http://lists.infradead.org/mailman/listinfo/barebox