From: Sascha Hauer <s.hauer@pengutronix.de>
To: Krzysztof Halasa <khc@pm.waw.pl>
Cc: barebox@lists.infradead.org
Subject: Re: [PATCH 1] Delete unused file common/dlmalloc.src.
Date: Tue, 21 Dec 2010 10:34:23 +0100 [thread overview]
Message-ID: <20101221093423.GA6017@pengutronix.de> (raw)
In-Reply-To: <m31v5cdq4z.fsf@intrepid.localdomain>
On Mon, Dec 20, 2010 at 11:40:44PM +0100, Krzysztof Halasa wrote:
> Delete unused file common/dlmalloc.src.
> Or is there any reason to have it here?
The reason probably is to keep the original code the implementation is
derived from around. I agree that we can remove it though, we have our
history in git and even this file can be restored from the history.
Sascha
>
> Signed-off-by: Krzysztof Hałasa <khc@pm.waw.pl>
>
> diff --git a/common/dlmalloc.src b/common/dlmalloc.src
> deleted file mode 100644
> index 32a38bc..0000000
> --- a/common/dlmalloc.src
> +++ /dev/null
> @@ -1,3265 +0,0 @@
> -/* ---------- To make a malloc.h, start cutting here ------------ */
> -
> -/*
> - A version of malloc/free/realloc written by Doug Lea and released to the
> - public domain. Send questions/comments/complaints/performance data
> - to dl@cs.oswego.edu
> -
> -* VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
> -
> - Note: There may be an updated version of this malloc obtainable at
> - ftp://g.oswego.edu/pub/misc/malloc.c
> - Check before installing!
> -
> -* Why use this malloc?
> -
> - This is not the fastest, most space-conserving, most portable, or
> - most tunable malloc ever written. However it is among the fastest
> - while also being among the most space-conserving, portable and tunable.
> - Consistent balance across these factors results in a good general-purpose
> - allocator. For a high-level description, see
> - http://g.oswego.edu/dl/html/malloc.html
> -
> -* Synopsis of public routines
> -
> - (Much fuller descriptions are contained in the program documentation below.)
> -
> - malloc(size_t n);
> - Return a pointer to a newly allocated chunk of at least n bytes, or null
> - if no space is available.
> - free(Void_t* p);
> - Release the chunk of memory pointed to by p, or no effect if p is null.
> - realloc(Void_t* p, size_t n);
> - Return a pointer to a chunk of size n that contains the same data
> - as does chunk p up to the minimum of (n, p's size) bytes, or null
> - if no space is available. The returned pointer may or may not be
> - the same as p. If p is null, equivalent to malloc. Unless the
> - #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
> - size argument of zero (re)allocates a minimum-sized chunk.
> - memalign(size_t alignment, size_t n);
> - Return a pointer to a newly allocated chunk of n bytes, aligned
> - in accord with the alignment argument, which must be a power of
> - two.
> - valloc(size_t n);
> - Equivalent to memalign(pagesize, n), where pagesize is the page
> - size of the system (or as near to this as can be figured out from
> - all the includes/defines below.)
> - pvalloc(size_t n);
> - Equivalent to valloc(minimum-page-that-holds(n)), that is,
> - round up n to nearest pagesize.
> - calloc(size_t unit, size_t quantity);
> - Returns a pointer to quantity * unit bytes, with all locations
> - set to zero.
> - cfree(Void_t* p);
> - Equivalent to free(p).
> - malloc_trim(size_t pad);
> - Release all but pad bytes of freed top-most memory back
> - to the system. Return 1 if successful, else 0.
> - malloc_usable_size(Void_t* p);
> - Report the number usable allocated bytes associated with allocated
> - chunk p. This may or may not report more bytes than were requested,
> - due to alignment and minimum size constraints.
> - malloc_stats();
> - Prints brief summary statistics on stderr.
> - mallinfo()
> - Returns (by copy) a struct containing various summary statistics.
> - mallopt(int parameter_number, int parameter_value)
> - Changes one of the tunable parameters described below. Returns
> - 1 if successful in changing the parameter, else 0.
> -
> -* Vital statistics:
> -
> - Alignment: 8-byte
> - 8 byte alignment is currently hardwired into the design. This
> - seems to suffice for all current machines and C compilers.
> -
> - Assumed pointer representation: 4 or 8 bytes
> - Code for 8-byte pointers is untested by me but has worked
> - reliably by Wolfram Gloger, who contributed most of the
> - changes supporting this.
> -
> - Assumed size_t representation: 4 or 8 bytes
> - Note that size_t is allowed to be 4 bytes even if pointers are 8.
> -
> - Minimum overhead per allocated chunk: 4 or 8 bytes
> - Each malloced chunk has a hidden overhead of 4 bytes holding size
> - and status information.
> -
> - Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
> - 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
> -
> - When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
> - ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
> - needed; 4 (8) for a trailing size field
> - and 8 (16) bytes for free list pointers. Thus, the minimum
> - allocatable size is 16/24/32 bytes.
> -
> - Even a request for zero bytes (i.e., malloc(0)) returns a
> - pointer to something of the minimum allocatable size.
> -
> - Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
> - 8-byte size_t: 2^63 - 16 bytes
> -
> - It is assumed that (possibly signed) size_t bit values suffice to
> - represent chunk sizes. `Possibly signed' is due to the fact
> - that `size_t' may be defined on a system as either a signed or
> - an unsigned type. To be conservative, values that would appear
> - as negative numbers are avoided.
> - Requests for sizes with a negative sign bit when the request
> - size is treaded as a long will return null.
> -
> - Maximum overhead wastage per allocated chunk: normally 15 bytes
> -
> - Alignnment demands, plus the minimum allocatable size restriction
> - make the normal worst-case wastage 15 bytes (i.e., up to 15
> - more bytes will be allocated than were requested in malloc), with
> - two exceptions:
> - 1. Because requests for zero bytes allocate non-zero space,
> - the worst case wastage for a request of zero bytes is 24 bytes.
> - 2. For requests >= mmap_threshold that are serviced via
> - mmap(), the worst case wastage is 8 bytes plus the remainder
> - from a system page (the minimal mmap unit); typically 4096 bytes.
> -
> -* Limitations
> -
> - Here are some features that are NOT currently supported
> -
> - * No user-definable hooks for callbacks and the like.
> - * No automated mechanism for fully checking that all accesses
> - to malloced memory stay within their bounds.
> - * No support for compaction.
> -
> -* Synopsis of compile-time options:
> -
> - People have reported using previous versions of this malloc on all
> - versions of Unix, sometimes by tweaking some of the defines
> - below. It has been tested most extensively on Solaris and
> - Linux. It is also reported to work on WIN32 platforms.
> - People have also reported adapting this malloc for use in
> - stand-alone embedded systems.
> -
> - The implementation is in straight, hand-tuned ANSI C. Among other
> - consequences, it uses a lot of macros. Because of this, to be at
> - all usable, this code should be compiled using an optimizing compiler
> - (for example gcc -O2) that can simplify expressions and control
> - paths.
> -
> - __STD_C (default: derived from C compiler defines)
> - Nonzero if using ANSI-standard C compiler, a C++ compiler, or
> - a C compiler sufficiently close to ANSI to get away with it.
> - DEBUG (default: NOT defined)
> - Define to enable debugging. Adds fairly extensive assertion-based
> - checking to help track down memory errors, but noticeably slows down
> - execution.
> - REALLOC_ZERO_BYTES_FREES (default: NOT defined)
> - Define this if you think that realloc(p, 0) should be equivalent
> - to free(p). Otherwise, since malloc returns a unique pointer for
> - malloc(0), so does realloc(p, 0).
> - HAVE_MEMCPY (default: defined)
> - Define if you are not otherwise using ANSI STD C, but still
> - have memcpy and memset in your C library and want to use them.
> - Otherwise, simple internal versions are supplied.
> - USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
> - Define as 1 if you want the C library versions of memset and
> - memcpy called in realloc and calloc (otherwise macro versions are used).
> - At least on some platforms, the simple macro versions usually
> - outperform libc versions.
> - HAVE_MMAP (default: defined as 1)
> - Define to non-zero to optionally make malloc() use mmap() to
> - allocate very large blocks.
> - HAVE_MREMAP (default: defined as 0 unless Linux libc set)
> - Define to non-zero to optionally make realloc() use mremap() to
> - reallocate very large blocks.
> - malloc_getpagesize (default: derived from system #includes)
> - Either a constant or routine call returning the system page size.
> - HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
> - Optionally define if you are on a system with a /usr/include/malloc.h
> - that declares struct mallinfo. It is not at all necessary to
> - define this even if you do, but will ensure consistency.
> - INTERNAL_SIZE_T (default: size_t)
> - Define to a 32-bit type (probably `unsigned int') if you are on a
> - 64-bit machine, yet do not want or need to allow malloc requests of
> - greater than 2^31 to be handled. This saves space, especially for
> - very small chunks.
> - INTERNAL_LINUX_C_LIB (default: NOT defined)
> - Defined only when compiled as part of Linux libc.
> - Also note that there is some odd internal name-mangling via defines
> - (for example, internally, `malloc' is named `mALLOc') needed
> - when compiling in this case. These look funny but don't otherwise
> - affect anything.
> - WIN32 (default: undefined)
> - Define this on MS win (95, nt) platforms to compile in sbrk emulation.
> - LACKS_UNISTD_H (default: undefined if not WIN32)
> - Define this if your system does not have a <unistd.h>.
> - LACKS_SYS_PARAM_H (default: undefined if not WIN32)
> - Define this if your system does not have a <sys/param.h>.
> - MORECORE (default: sbrk)
> - The name of the routine to call to obtain more memory from the system.
> - MORECORE_FAILURE (default: -1)
> - The value returned upon failure of MORECORE.
> - MORECORE_CLEARS (default 1)
> - True (1) if the routine mapped to MORECORE zeroes out memory (which
> - holds for sbrk).
> - DEFAULT_TRIM_THRESHOLD
> - DEFAULT_TOP_PAD
> - DEFAULT_MMAP_THRESHOLD
> - DEFAULT_MMAP_MAX
> - Default values of tunable parameters (described in detail below)
> - controlling interaction with host system routines (sbrk, mmap, etc).
> - These values may also be changed dynamically via mallopt(). The
> - preset defaults are those that give best performance for typical
> - programs/systems.
> - USE_DL_PREFIX (default: undefined)
> - Prefix all public routines with the string 'dl'. Useful to
> - quickly avoid procedure declaration conflicts and linker symbol
> - conflicts with existing memory allocation routines.
> -
> -
> -*/
> -
> -\f
> -
> -
> -/* Preliminaries */
> -
> -#ifndef __STD_C
> -#ifdef __STDC__
> -#define __STD_C 1
> -#else
> -#if __cplusplus
> -#define __STD_C 1
> -#else
> -#define __STD_C 0
> -#endif /*__cplusplus*/
> -#endif /*__STDC__*/
> -#endif /*__STD_C*/
> -
> -#ifndef Void_t
> -#if (__STD_C || defined(WIN32))
> -#define Void_t void
> -#else
> -#define Void_t char
> -#endif
> -#endif /*Void_t*/
> -
> -#if __STD_C
> -#include <stddef.h> /* for size_t */
> -#else
> -#include <sys/types.h>
> -#endif
> -
> -#ifdef __cplusplus
> -extern "C" {
> -#endif
> -
> -#include <stdio.h> /* needed for malloc_stats */
> -
> -
> -/*
> - Compile-time options
> -*/
> -
> -
> -/*
> - Debugging:
> -
> - Because freed chunks may be overwritten with link fields, this
> - malloc will often die when freed memory is overwritten by user
> - programs. This can be very effective (albeit in an annoying way)
> - in helping track down dangling pointers.
> -
> - If you compile with -DDEBUG, a number of assertion checks are
> - enabled that will catch more memory errors. You probably won't be
> - able to make much sense of the actual assertion errors, but they
> - should help you locate incorrectly overwritten memory. The
> - checking is fairly extensive, and will slow down execution
> - noticeably. Calling malloc_stats or mallinfo with DEBUG set will
> - attempt to check every non-mmapped allocated and free chunk in the
> - course of computing the summmaries. (By nature, mmapped regions
> - cannot be checked very much automatically.)
> -
> - Setting DEBUG may also be helpful if you are trying to modify
> - this code. The assertions in the check routines spell out in more
> - detail the assumptions and invariants underlying the algorithms.
> -
> -*/
> -
> -#if DEBUG
> -#include <assert.h>
> -#else
> -#define assert(x) ((void)0)
> -#endif
> -
> -
> -/*
> - INTERNAL_SIZE_T is the word-size used for internal bookkeeping
> - of chunk sizes. On a 64-bit machine, you can reduce malloc
> - overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
> - at the expense of not being able to handle requests greater than
> - 2^31. This limitation is hardly ever a concern; you are encouraged
> - to set this. However, the default version is the same as size_t.
> -*/
> -
> -#ifndef INTERNAL_SIZE_T
> -#define INTERNAL_SIZE_T size_t
> -#endif
> -
> -/*
> - REALLOC_ZERO_BYTES_FREES should be set if a call to
> - realloc with zero bytes should be the same as a call to free.
> - Some people think it should. Otherwise, since this malloc
> - returns a unique pointer for malloc(0), so does realloc(p, 0).
> -*/
> -
> -
> -/* #define REALLOC_ZERO_BYTES_FREES */
> -
> -
> -/*
> - WIN32 causes an emulation of sbrk to be compiled in
> - mmap-based options are not currently supported in WIN32.
> -*/
> -
> -/* #define WIN32 */
> -#ifdef WIN32
> -#define MORECORE wsbrk
> -#define HAVE_MMAP 0
> -
> -#define LACKS_UNISTD_H
> -#define LACKS_SYS_PARAM_H
> -
> -/*
> - Include 'windows.h' to get the necessary declarations for the
> - Microsoft Visual C++ data structures and routines used in the 'sbrk'
> - emulation.
> -
> - Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
> - Visual C++ header files are included.
> -*/
> -#define WIN32_LEAN_AND_MEAN
> -#include <windows.h>
> -#endif
> -
> -
> -/*
> - HAVE_MEMCPY should be defined if you are not otherwise using
> - ANSI STD C, but still have memcpy and memset in your C library
> - and want to use them in calloc and realloc. Otherwise simple
> - macro versions are defined here.
> -
> - USE_MEMCPY should be defined as 1 if you actually want to
> - have memset and memcpy called. People report that the macro
> - versions are often enough faster than libc versions on many
> - systems that it is better to use them.
> -
> -*/
> -
> -#define HAVE_MEMCPY
> -
> -#ifndef USE_MEMCPY
> -#ifdef HAVE_MEMCPY
> -#define USE_MEMCPY 1
> -#else
> -#define USE_MEMCPY 0
> -#endif
> -#endif
> -
> -#if (__STD_C || defined(HAVE_MEMCPY))
> -
> -#if __STD_C
> -void* memset(void*, int, size_t);
> -void* memcpy(void*, const void*, size_t);
> -#else
> -#ifdef WIN32
> -/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
> -/* 'windows.h' */
> -#else
> -Void_t* memset();
> -Void_t* memcpy();
> -#endif
> -#endif
> -#endif
> -
> -#if USE_MEMCPY
> -
> -/* The following macros are only invoked with (2n+1)-multiples of
> - INTERNAL_SIZE_T units, with a positive integer n. This is exploited
> - for fast inline execution when n is small. */
> -
> -#define MALLOC_ZERO(charp, nbytes) \
> -do { \
> - INTERNAL_SIZE_T mzsz = (nbytes); \
> - if(mzsz <= 9*sizeof(mzsz)) { \
> - INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
> - if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
> - *mz++ = 0; \
> - if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
> - *mz++ = 0; \
> - if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
> - *mz++ = 0; }}} \
> - *mz++ = 0; \
> - *mz++ = 0; \
> - *mz = 0; \
> - } else memset((charp), 0, mzsz); \
> -} while(0)
> -
> -#define MALLOC_COPY(dest,src,nbytes) \
> -do { \
> - INTERNAL_SIZE_T mcsz = (nbytes); \
> - if(mcsz <= 9*sizeof(mcsz)) { \
> - INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
> - INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
> - if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
> - *mcdst++ = *mcsrc++; \
> - if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
> - *mcdst++ = *mcsrc++; \
> - if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
> - *mcdst++ = *mcsrc++; }}} \
> - *mcdst++ = *mcsrc++; \
> - *mcdst++ = *mcsrc++; \
> - *mcdst = *mcsrc ; \
> - } else memcpy(dest, src, mcsz); \
> -} while(0)
> -
> -#else /* !USE_MEMCPY */
> -
> -/* Use Duff's device for good zeroing/copying performance. */
> -
> -#define MALLOC_ZERO(charp, nbytes) \
> -do { \
> - INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
> - long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
> - if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
> - switch (mctmp) { \
> - case 0: for(;;) { *mzp++ = 0; \
> - case 7: *mzp++ = 0; \
> - case 6: *mzp++ = 0; \
> - case 5: *mzp++ = 0; \
> - case 4: *mzp++ = 0; \
> - case 3: *mzp++ = 0; \
> - case 2: *mzp++ = 0; \
> - case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
> - } \
> -} while(0)
> -
> -#define MALLOC_COPY(dest,src,nbytes) \
> -do { \
> - INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
> - INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
> - long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
> - if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
> - switch (mctmp) { \
> - case 0: for(;;) { *mcdst++ = *mcsrc++; \
> - case 7: *mcdst++ = *mcsrc++; \
> - case 6: *mcdst++ = *mcsrc++; \
> - case 5: *mcdst++ = *mcsrc++; \
> - case 4: *mcdst++ = *mcsrc++; \
> - case 3: *mcdst++ = *mcsrc++; \
> - case 2: *mcdst++ = *mcsrc++; \
> - case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
> - } \
> -} while(0)
> -
> -#endif
> -
> -
> -/*
> - Define HAVE_MMAP to optionally make malloc() use mmap() to
> - allocate very large blocks. These will be returned to the
> - operating system immediately after a free().
> -*/
> -
> -#ifndef HAVE_MMAP
> -#define HAVE_MMAP 1
> -#endif
> -
> -/*
> - Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
> - large blocks. This is currently only possible on Linux with
> - kernel versions newer than 1.3.77.
> -*/
> -
> -#ifndef HAVE_MREMAP
> -#ifdef INTERNAL_LINUX_C_LIB
> -#define HAVE_MREMAP 1
> -#else
> -#define HAVE_MREMAP 0
> -#endif
> -#endif
> -
> -#if HAVE_MMAP
> -
> -#include <unistd.h>
> -#include <fcntl.h>
> -#include <sys/mman.h>
> -
> -#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
> -#define MAP_ANONYMOUS MAP_ANON
> -#endif
> -
> -#endif /* HAVE_MMAP */
> -
> -/*
> - Access to system page size. To the extent possible, this malloc
> - manages memory from the system in page-size units.
> -
> - The following mechanics for getpagesize were adapted from
> - bsd/gnu getpagesize.h
> -*/
> -
> -#ifndef LACKS_UNISTD_H
> -# include <unistd.h>
> -#endif
> -
> -#ifndef malloc_getpagesize
> -# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
> -# ifndef _SC_PAGE_SIZE
> -# define _SC_PAGE_SIZE _SC_PAGESIZE
> -# endif
> -# endif
> -# ifdef _SC_PAGE_SIZE
> -# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
> -# else
> -# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
> - extern size_t getpagesize();
> -# define malloc_getpagesize getpagesize()
> -# else
> -# ifdef WIN32
> -# define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
> -# else
> -# ifndef LACKS_SYS_PARAM_H
> -# include <sys/param.h>
> -# endif
> -# ifdef EXEC_PAGESIZE
> -# define malloc_getpagesize EXEC_PAGESIZE
> -# else
> -# ifdef NBPG
> -# ifndef CLSIZE
> -# define malloc_getpagesize NBPG
> -# else
> -# define malloc_getpagesize (NBPG * CLSIZE)
> -# endif
> -# else
> -# ifdef NBPC
> -# define malloc_getpagesize NBPC
> -# else
> -# ifdef PAGESIZE
> -# define malloc_getpagesize PAGESIZE
> -# else
> -# define malloc_getpagesize (4096) /* just guess */
> -# endif
> -# endif
> -# endif
> -# endif
> -# endif
> -# endif
> -# endif
> -#endif
> -
> -
> -/*
> -
> - This version of malloc supports the standard SVID/XPG mallinfo
> - routine that returns a struct containing the same kind of
> - information you can get from malloc_stats. It should work on
> - any SVID/XPG compliant system that has a /usr/include/malloc.h
> - defining struct mallinfo. (If you'd like to install such a thing
> - yourself, cut out the preliminary declarations as described above
> - and below and save them in a malloc.h file. But there's no
> - compelling reason to bother to do this.)
> -
> - The main declaration needed is the mallinfo struct that is returned
> - (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
> - bunch of fields, most of which are not even meaningful in this
> - version of malloc. Some of these fields are are instead filled by
> - mallinfo() with other numbers that might possibly be of interest.
> -
> - HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
> - /usr/include/malloc.h file that includes a declaration of struct
> - mallinfo. If so, it is included; else an SVID2/XPG2 compliant
> - version is declared below. These must be precisely the same for
> - mallinfo() to work.
> -
> -*/
> -
> -/* #define HAVE_USR_INCLUDE_MALLOC_H */
> -
> -#if HAVE_USR_INCLUDE_MALLOC_H
> -#include "/usr/include/malloc.h"
> -#else
> -
> -/* SVID2/XPG mallinfo structure */
> -
> -struct mallinfo {
> - int arena; /* total space allocated from system */
> - int ordblks; /* number of non-inuse chunks */
> - int smblks; /* unused -- always zero */
> - int hblks; /* number of mmapped regions */
> - int hblkhd; /* total space in mmapped regions */
> - int usmblks; /* unused -- always zero */
> - int fsmblks; /* unused -- always zero */
> - int uordblks; /* total allocated space */
> - int fordblks; /* total non-inuse space */
> - int keepcost; /* top-most, releasable (via malloc_trim) space */
> -};
> -
> -/* SVID2/XPG mallopt options */
> -
> -#define M_MXFAST 1 /* UNUSED in this malloc */
> -#define M_NLBLKS 2 /* UNUSED in this malloc */
> -#define M_GRAIN 3 /* UNUSED in this malloc */
> -#define M_KEEP 4 /* UNUSED in this malloc */
> -
> -#endif
> -
> -/* mallopt options that actually do something */
> -
> -#define M_TRIM_THRESHOLD -1
> -#define M_TOP_PAD -2
> -#define M_MMAP_THRESHOLD -3
> -#define M_MMAP_MAX -4
> -
> -
> -#ifndef DEFAULT_TRIM_THRESHOLD
> -#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
> -#endif
> -
> -/*
> - M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
> - to keep before releasing via malloc_trim in free().
> -
> - Automatic trimming is mainly useful in long-lived programs.
> - Because trimming via sbrk can be slow on some systems, and can
> - sometimes be wasteful (in cases where programs immediately
> - afterward allocate more large chunks) the value should be high
> - enough so that your overall system performance would improve by
> - releasing.
> -
> - The trim threshold and the mmap control parameters (see below)
> - can be traded off with one another. Trimming and mmapping are
> - two different ways of releasing unused memory back to the
> - system. Between these two, it is often possible to keep
> - system-level demands of a long-lived program down to a bare
> - minimum. For example, in one test suite of sessions measuring
> - the XF86 X server on Linux, using a trim threshold of 128K and a
> - mmap threshold of 192K led to near-minimal long term resource
> - consumption.
> -
> - If you are using this malloc in a long-lived program, it should
> - pay to experiment with these values. As a rough guide, you
> - might set to a value close to the average size of a process
> - (program) running on your system. Releasing this much memory
> - would allow such a process to run in memory. Generally, it's
> - worth it to tune for trimming rather tham memory mapping when a
> - program undergoes phases where several large chunks are
> - allocated and released in ways that can reuse each other's
> - storage, perhaps mixed with phases where there are no such
> - chunks at all. And in well-behaved long-lived programs,
> - controlling release of large blocks via trimming versus mapping
> - is usually faster.
> -
> - However, in most programs, these parameters serve mainly as
> - protection against the system-level effects of carrying around
> - massive amounts of unneeded memory. Since frequent calls to
> - sbrk, mmap, and munmap otherwise degrade performance, the default
> - parameters are set to relatively high values that serve only as
> - safeguards.
> -
> - The default trim value is high enough to cause trimming only in
> - fairly extreme (by current memory consumption standards) cases.
> - It must be greater than page size to have any useful effect. To
> - disable trimming completely, you can set to (unsigned long)(-1);
> -
> -
> -*/
> -
> -
> -#ifndef DEFAULT_TOP_PAD
> -#define DEFAULT_TOP_PAD (0)
> -#endif
> -
> -/*
> - M_TOP_PAD is the amount of extra `padding' space to allocate or
> - retain whenever sbrk is called. It is used in two ways internally:
> -
> - * When sbrk is called to extend the top of the arena to satisfy
> - a new malloc request, this much padding is added to the sbrk
> - request.
> -
> - * When malloc_trim is called automatically from free(),
> - it is used as the `pad' argument.
> -
> - In both cases, the actual amount of padding is rounded
> - so that the end of the arena is always a system page boundary.
> -
> - The main reason for using padding is to avoid calling sbrk so
> - often. Having even a small pad greatly reduces the likelihood
> - that nearly every malloc request during program start-up (or
> - after trimming) will invoke sbrk, which needlessly wastes
> - time.
> -
> - Automatic rounding-up to page-size units is normally sufficient
> - to avoid measurable overhead, so the default is 0. However, in
> - systems where sbrk is relatively slow, it can pay to increase
> - this value, at the expense of carrying around more memory than
> - the program needs.
> -
> -*/
> -
> -
> -#ifndef DEFAULT_MMAP_THRESHOLD
> -#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
> -#endif
> -
> -/*
> -
> - M_MMAP_THRESHOLD is the request size threshold for using mmap()
> - to service a request. Requests of at least this size that cannot
> - be allocated using already-existing space will be serviced via mmap.
> - (If enough normal freed space already exists it is used instead.)
> -
> - Using mmap segregates relatively large chunks of memory so that
> - they can be individually obtained and released from the host
> - system. A request serviced through mmap is never reused by any
> - other request (at least not directly; the system may just so
> - happen to remap successive requests to the same locations).
> -
> - Segregating space in this way has the benefit that mmapped space
> - can ALWAYS be individually released back to the system, which
> - helps keep the system level memory demands of a long-lived
> - program low. Mapped memory can never become `locked' between
> - other chunks, as can happen with normally allocated chunks, which
> - menas that even trimming via malloc_trim would not release them.
> -
> - However, it has the disadvantages that:
> -
> - 1. The space cannot be reclaimed, consolidated, and then
> - used to service later requests, as happens with normal chunks.
> - 2. It can lead to more wastage because of mmap page alignment
> - requirements
> - 3. It causes malloc performance to be more dependent on host
> - system memory management support routines which may vary in
> - implementation quality and may impose arbitrary
> - limitations. Generally, servicing a request via normal
> - malloc steps is faster than going through a system's mmap.
> -
> - All together, these considerations should lead you to use mmap
> - only for relatively large requests.
> -
> -
> -*/
> -
> -
> -#ifndef DEFAULT_MMAP_MAX
> -#if HAVE_MMAP
> -#define DEFAULT_MMAP_MAX (64)
> -#else
> -#define DEFAULT_MMAP_MAX (0)
> -#endif
> -#endif
> -
> -/*
> - M_MMAP_MAX is the maximum number of requests to simultaneously
> - service using mmap. This parameter exists because:
> -
> - 1. Some systems have a limited number of internal tables for
> - use by mmap.
> - 2. In most systems, overreliance on mmap can degrade overall
> - performance.
> - 3. If a program allocates many large regions, it is probably
> - better off using normal sbrk-based allocation routines that
> - can reclaim and reallocate normal heap memory. Using a
> - small value allows transition into this mode after the
> - first few allocations.
> -
> - Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
> - the default value is 0, and attempts to set it to non-zero values
> - in mallopt will fail.
> -*/
> -
> -
> -/*
> - USE_DL_PREFIX will prefix all public routines with the string 'dl'.
> - Useful to quickly avoid procedure declaration conflicts and linker
> - symbol conflicts with existing memory allocation routines.
> -
> -*/
> -
> -/* #define USE_DL_PREFIX */
> -
> -
> -/*
> -
> - Special defines for linux libc
> -
> - Except when compiled using these special defines for Linux libc
> - using weak aliases, this malloc is NOT designed to work in
> - multithreaded applications. No semaphores or other concurrency
> - control are provided to ensure that multiple malloc or free calls
> - don't run at the same time, which could be disasterous. A single
> - semaphore could be used across malloc, realloc, and free (which is
> - essentially the effect of the linux weak alias approach). It would
> - be hard to obtain finer granularity.
> -
> -*/
> -
> -
> -#ifdef INTERNAL_LINUX_C_LIB
> -
> -#if __STD_C
> -
> -Void_t * __default_morecore_init (ptrdiff_t);
> -Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
> -
> -#else
> -
> -Void_t * __default_morecore_init ();
> -Void_t *(*__morecore)() = __default_morecore_init;
> -
> -#endif
> -
> -#define MORECORE (*__morecore)
> -#define MORECORE_FAILURE 0
> -#define MORECORE_CLEARS 1
> -
> -#else /* INTERNAL_LINUX_C_LIB */
> -
> -#if __STD_C
> -extern Void_t* sbrk(ptrdiff_t);
> -#else
> -extern Void_t* sbrk();
> -#endif
> -
> -#ifndef MORECORE
> -#define MORECORE sbrk
> -#endif
> -
> -#ifndef MORECORE_FAILURE
> -#define MORECORE_FAILURE -1
> -#endif
> -
> -#ifndef MORECORE_CLEARS
> -#define MORECORE_CLEARS 1
> -#endif
> -
> -#endif /* INTERNAL_LINUX_C_LIB */
> -
> -#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
> -
> -#define cALLOc __libc_calloc
> -#define fREe __libc_free
> -#define mALLOc __libc_malloc
> -#define mEMALIGn __libc_memalign
> -#define rEALLOc __libc_realloc
> -#define vALLOc __libc_valloc
> -#define pvALLOc __libc_pvalloc
> -#define mALLINFo __libc_mallinfo
> -#define mALLOPt __libc_mallopt
> -
> -#pragma weak calloc = __libc_calloc
> -#pragma weak free = __libc_free
> -#pragma weak cfree = __libc_free
> -#pragma weak malloc = __libc_malloc
> -#pragma weak memalign = __libc_memalign
> -#pragma weak realloc = __libc_realloc
> -#pragma weak valloc = __libc_valloc
> -#pragma weak pvalloc = __libc_pvalloc
> -#pragma weak mallinfo = __libc_mallinfo
> -#pragma weak mallopt = __libc_mallopt
> -
> -#else
> -
> -#ifdef USE_DL_PREFIX
> -#define cALLOc dlcalloc
> -#define fREe dlfree
> -#define mALLOc dlmalloc
> -#define mEMALIGn dlmemalign
> -#define rEALLOc dlrealloc
> -#define vALLOc dlvalloc
> -#define pvALLOc dlpvalloc
> -#define mALLINFo dlmallinfo
> -#define mALLOPt dlmallopt
> -#else /* USE_DL_PREFIX */
> -#define cALLOc calloc
> -#define fREe free
> -#define mALLOc malloc
> -#define mEMALIGn memalign
> -#define rEALLOc realloc
> -#define vALLOc valloc
> -#define pvALLOc pvalloc
> -#define mALLINFo mallinfo
> -#define mALLOPt mallopt
> -#endif /* USE_DL_PREFIX */
> -
> -#endif
> -
> -/* Public routines */
> -
> -#if __STD_C
> -
> -Void_t* mALLOc(size_t);
> -void fREe(Void_t*);
> -Void_t* rEALLOc(Void_t*, size_t);
> -Void_t* mEMALIGn(size_t, size_t);
> -Void_t* vALLOc(size_t);
> -Void_t* pvALLOc(size_t);
> -Void_t* cALLOc(size_t, size_t);
> -void cfree(Void_t*);
> -int malloc_trim(size_t);
> -size_t malloc_usable_size(Void_t*);
> -void malloc_stats();
> -int mALLOPt(int, int);
> -struct mallinfo mALLINFo(void);
> -#else
> -Void_t* mALLOc();
> -void fREe();
> -Void_t* rEALLOc();
> -Void_t* mEMALIGn();
> -Void_t* vALLOc();
> -Void_t* pvALLOc();
> -Void_t* cALLOc();
> -void cfree();
> -int malloc_trim();
> -size_t malloc_usable_size();
> -void malloc_stats();
> -int mALLOPt();
> -struct mallinfo mALLINFo();
> -#endif
> -
> -
> -#ifdef __cplusplus
> -}; /* end of extern "C" */
> -#endif
> -
> -/* ---------- To make a malloc.h, end cutting here ------------ */
> -
> -
> -/*
> - Emulation of sbrk for WIN32
> - All code within the ifdef WIN32 is untested by me.
> -
> - Thanks to Martin Fong and others for supplying this.
> -*/
> -
> -
> -#ifdef WIN32
> -
> -#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
> -~(malloc_getpagesize-1))
> -#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
> -
> -/* resrve 64MB to insure large contiguous space */
> -#define RESERVED_SIZE (1024*1024*64)
> -#define NEXT_SIZE (2048*1024)
> -#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
> -
> -struct GmListElement;
> -typedef struct GmListElement GmListElement;
> -
> -struct GmListElement
> -{
> - GmListElement* next;
> - void* base;
> -};
> -
> -static GmListElement* head = 0;
> -static unsigned int gNextAddress = 0;
> -static unsigned int gAddressBase = 0;
> -static unsigned int gAllocatedSize = 0;
> -
> -static
> -GmListElement* makeGmListElement (void* bas)
> -{
> - GmListElement* this;
> - this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
> - assert (this);
> - if (this)
> - {
> - this->base = bas;
> - this->next = head;
> - head = this;
> - }
> - return this;
> -}
> -
> -void gcleanup ()
> -{
> - BOOL rval;
> - assert ( (head == NULL) || (head->base == (void*)gAddressBase));
> - if (gAddressBase && (gNextAddress - gAddressBase))
> - {
> - rval = VirtualFree ((void*)gAddressBase,
> - gNextAddress - gAddressBase,
> - MEM_DECOMMIT);
> - assert (rval);
> - }
> - while (head)
> - {
> - GmListElement* next = head->next;
> - rval = VirtualFree (head->base, 0, MEM_RELEASE);
> - assert (rval);
> - LocalFree (head);
> - head = next;
> - }
> -}
> -
> -static
> -void* findRegion (void* start_address, unsigned long size)
> -{
> - MEMORY_BASIC_INFORMATION info;
> - if (size >= TOP_MEMORY) return NULL;
> -
> - while ((unsigned long)start_address + size < TOP_MEMORY)
> - {
> - VirtualQuery (start_address, &info, sizeof (info));
> - if ((info.State == MEM_FREE) && (info.RegionSize >= size))
> - return start_address;
> - else
> - {
> - /* Requested region is not available so see if the */
> - /* next region is available. Set 'start_address' */
> - /* to the next region and call 'VirtualQuery()' */
> - /* again. */
> -
> - start_address = (char*)info.BaseAddress + info.RegionSize;
> -
> - /* Make sure we start looking for the next region */
> - /* on the *next* 64K boundary. Otherwise, even if */
> - /* the new region is free according to */
> - /* 'VirtualQuery()', the subsequent call to */
> - /* 'VirtualAlloc()' (which follows the call to */
> - /* this routine in 'wsbrk()') will round *down* */
> - /* the requested address to a 64K boundary which */
> - /* we already know is an address in the */
> - /* unavailable region. Thus, the subsequent call */
> - /* to 'VirtualAlloc()' will fail and bring us back */
> - /* here, causing us to go into an infinite loop. */
> -
> - start_address =
> - (void *) AlignPage64K((unsigned long) start_address);
> - }
> - }
> - return NULL;
> -
> -}
> -
> -
> -void* wsbrk (long size)
> -{
> - void* tmp;
> - if (size > 0)
> - {
> - if (gAddressBase == 0)
> - {
> - gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
> - gNextAddress = gAddressBase =
> - (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
> - MEM_RESERVE, PAGE_NOACCESS);
> - } else if (AlignPage (gNextAddress + size) > (gAddressBase +
> -gAllocatedSize))
> - {
> - long new_size = max (NEXT_SIZE, AlignPage (size));
> - void* new_address = (void*)(gAddressBase+gAllocatedSize);
> - do
> - {
> - new_address = findRegion (new_address, new_size);
> -
> - if (new_address == 0)
> - return (void*)-1;
> -
> - gAddressBase = gNextAddress =
> - (unsigned int)VirtualAlloc (new_address, new_size,
> - MEM_RESERVE, PAGE_NOACCESS);
> - /* repeat in case of race condition */
> - /* The region that we found has been snagged */
> - /* by another thread */
> - }
> - while (gAddressBase == 0);
> -
> - assert (new_address == (void*)gAddressBase);
> -
> - gAllocatedSize = new_size;
> -
> - if (!makeGmListElement ((void*)gAddressBase))
> - return (void*)-1;
> - }
> - if ((size + gNextAddress) > AlignPage (gNextAddress))
> - {
> - void* res;
> - res = VirtualAlloc ((void*)AlignPage (gNextAddress),
> - (size + gNextAddress -
> - AlignPage (gNextAddress)),
> - MEM_COMMIT, PAGE_READWRITE);
> - if (res == 0)
> - return (void*)-1;
> - }
> - tmp = (void*)gNextAddress;
> - gNextAddress = (unsigned int)tmp + size;
> - return tmp;
> - }
> - else if (size < 0)
> - {
> - unsigned int alignedGoal = AlignPage (gNextAddress + size);
> - /* Trim by releasing the virtual memory */
> - if (alignedGoal >= gAddressBase)
> - {
> - VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
> - MEM_DECOMMIT);
> - gNextAddress = gNextAddress + size;
> - return (void*)gNextAddress;
> - }
> - else
> - {
> - VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
> - MEM_DECOMMIT);
> - gNextAddress = gAddressBase;
> - return (void*)-1;
> - }
> - }
> - else
> - {
> - return (void*)gNextAddress;
> - }
> -}
> -
> -#endif
> -
> -\f
> -
> -/*
> - Type declarations
> -*/
> -
> -
> -struct malloc_chunk
> -{
> - INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
> - INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
> - struct malloc_chunk* fd; /* double links -- used only if free. */
> - struct malloc_chunk* bk;
> -};
> -
> -typedef struct malloc_chunk* mchunkptr;
> -
> -/*
> -
> - malloc_chunk details:
> -
> - (The following includes lightly edited explanations by Colin Plumb.)
> -
> - Chunks of memory are maintained using a `boundary tag' method as
> - described in e.g., Knuth or Standish. (See the paper by Paul
> - Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
> - survey of such techniques.) Sizes of free chunks are stored both
> - in the front of each chunk and at the end. This makes
> - consolidating fragmented chunks into bigger chunks very fast. The
> - size fields also hold bits representing whether chunks are free or
> - in use.
> -
> - An allocated chunk looks like this:
> -
> -
> - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Size of previous chunk, if allocated | |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Size of chunk, in bytes |P|
> - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | User data starts here... .
> - . .
> - . (malloc_usable_space() bytes) .
> - . |
> -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Size of chunk |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -
> -
> - Where "chunk" is the front of the chunk for the purpose of most of
> - the malloc code, but "mem" is the pointer that is returned to the
> - user. "Nextchunk" is the beginning of the next contiguous chunk.
> -
> - Chunks always begin on even word boundries, so the mem portion
> - (which is returned to the user) is also on an even word boundary, and
> - thus double-word aligned.
> -
> - Free chunks are stored in circular doubly-linked lists, and look like this:
> -
> - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Size of previous chunk |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - `head:' | Size of chunk, in bytes |P|
> - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Forward pointer to next chunk in list |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Back pointer to previous chunk in list |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - | Unused space (may be 0 bytes long) .
> - . .
> - . |
> -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> - `foot:' | Size of chunk, in bytes |
> - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -
> - The P (PREV_INUSE) bit, stored in the unused low-order bit of the
> - chunk size (which is always a multiple of two words), is an in-use
> - bit for the *previous* chunk. If that bit is *clear*, then the
> - word before the current chunk size contains the previous chunk
> - size, and can be used to find the front of the previous chunk.
> - (The very first chunk allocated always has this bit set,
> - preventing access to non-existent (or non-owned) memory.)
> -
> - Note that the `foot' of the current chunk is actually represented
> - as the prev_size of the NEXT chunk. (This makes it easier to
> - deal with alignments etc).
> -
> - The two exceptions to all this are
> -
> - 1. The special chunk `top', which doesn't bother using the
> - trailing size field since there is no
> - next contiguous chunk that would have to index off it. (After
> - initialization, `top' is forced to always exist. If it would
> - become less than MINSIZE bytes long, it is replenished via
> - malloc_extend_top.)
> -
> - 2. Chunks allocated via mmap, which have the second-lowest-order
> - bit (IS_MMAPPED) set in their size fields. Because they are
> - never merged or traversed from any other chunk, they have no
> - foot size or inuse information.
> -
> - Available chunks are kept in any of several places (all declared below):
> -
> - * `av': An array of chunks serving as bin headers for consolidated
> - chunks. Each bin is doubly linked. The bins are approximately
> - proportionally (log) spaced. There are a lot of these bins
> - (128). This may look excessive, but works very well in
> - practice. All procedures maintain the invariant that no
> - consolidated chunk physically borders another one. Chunks in
> - bins are kept in size order, with ties going to the
> - approximately least recently used chunk.
> -
> - The chunks in each bin are maintained in decreasing sorted order by
> - size. This is irrelevant for the small bins, which all contain
> - the same-sized chunks, but facilitates best-fit allocation for
> - larger chunks. (These lists are just sequential. Keeping them in
> - order almost never requires enough traversal to warrant using
> - fancier ordered data structures.) Chunks of the same size are
> - linked with the most recently freed at the front, and allocations
> - are taken from the back. This results in LRU or FIFO allocation
> - order, which tends to give each chunk an equal opportunity to be
> - consolidated with adjacent freed chunks, resulting in larger free
> - chunks and less fragmentation.
> -
> - * `top': The top-most available chunk (i.e., the one bordering the
> - end of available memory) is treated specially. It is never
> - included in any bin, is used only if no other chunk is
> - available, and is released back to the system if it is very
> - large (see M_TRIM_THRESHOLD).
> -
> - * `last_remainder': A bin holding only the remainder of the
> - most recently split (non-top) chunk. This bin is checked
> - before other non-fitting chunks, so as to provide better
> - locality for runs of sequentially allocated chunks.
> -
> - * Implicitly, through the host system's memory mapping tables.
> - If supported, requests greater than a threshold are usually
> - serviced via calls to mmap, and then later released via munmap.
> -
> -*/
> -
> -
> -\f
> -
> -
> -/* sizes, alignments */
> -
> -#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
> -#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
> -#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
> -#define MINSIZE (sizeof(struct malloc_chunk))
> -
> -/* conversion from malloc headers to user pointers, and back */
> -
> -#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
> -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
> -
> -/* pad request bytes into a usable size */
> -
> -#define request2size(req) \
> - (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
> - (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
> - (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
> -
> -/* Check if m has acceptable alignment */
> -
> -#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
> -
> -
> -\f
> -
> -/*
> - Physical chunk operations
> -*/
> -
> -
> -/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
> -
> -#define PREV_INUSE 0x1
> -
> -/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
> -
> -#define IS_MMAPPED 0x2
> -
> -/* Bits to mask off when extracting size */
> -
> -#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
> -
> -
> -/* Ptr to next physical malloc_chunk. */
> -
> -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
> -
> -/* Ptr to previous physical malloc_chunk */
> -
> -#define prev_chunk(p)\
> - ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
> -
> -
> -/* Treat space at ptr + offset as a chunk */
> -
> -#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
> -
> -
> -\f
> -
> -/*
> - Dealing with use bits
> -*/
> -
> -/* extract p's inuse bit */
> -
> -#define inuse(p)\
> -((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
> -
> -/* extract inuse bit of previous chunk */
> -
> -#define prev_inuse(p) ((p)->size & PREV_INUSE)
> -
> -/* check for mmap()'ed chunk */
> -
> -#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
> -
> -/* set/clear chunk as in use without otherwise disturbing */
> -
> -#define set_inuse(p)\
> -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
> -
> -#define clear_inuse(p)\
> -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
> -
> -/* check/set/clear inuse bits in known places */
> -
> -#define inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
> -
> -#define set_inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
> -
> -#define clear_inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
> -
> -
> -\f
> -
> -/*
> - Dealing with size fields
> -*/
> -
> -/* Get size, ignoring use bits */
> -
> -#define chunksize(p) ((p)->size & ~(SIZE_BITS))
> -
> -/* Set size at head, without disturbing its use bit */
> -
> -#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
> -
> -/* Set size/use ignoring previous bits in header */
> -
> -#define set_head(p, s) ((p)->size = (s))
> -
> -/* Set size at footer (only when chunk is not in use) */
> -
> -#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
> -
> -
> -\f
> -
> -
> -/*
> - Bins
> -
> - The bins, `av_' are an array of pairs of pointers serving as the
> - heads of (initially empty) doubly-linked lists of chunks, laid out
> - in a way so that each pair can be treated as if it were in a
> - malloc_chunk. (This way, the fd/bk offsets for linking bin heads
> - and chunks are the same).
> -
> - Bins for sizes < 512 bytes contain chunks of all the same size, spaced
> - 8 bytes apart. Larger bins are approximately logarithmically
> - spaced. (See the table below.) The `av_' array is never mentioned
> - directly in the code, but instead via bin access macros.
> -
> - Bin layout:
> -
> - 64 bins of size 8
> - 32 bins of size 64
> - 16 bins of size 512
> - 8 bins of size 4096
> - 4 bins of size 32768
> - 2 bins of size 262144
> - 1 bin of size what's left
> -
> - There is actually a little bit of slop in the numbers in bin_index
> - for the sake of speed. This makes no difference elsewhere.
> -
> - The special chunks `top' and `last_remainder' get their own bins,
> - (this is implemented via yet more trickery with the av_ array),
> - although `top' is never properly linked to its bin since it is
> - always handled specially.
> -
> -*/
> -
> -#define NAV 128 /* number of bins */
> -
> -typedef struct malloc_chunk* mbinptr;
> -
> -/* access macros */
> -
> -#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
> -#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
> -#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
> -
> -/*
> - The first 2 bins are never indexed. The corresponding av_ cells are instead
> - used for bookkeeping. This is not to save space, but to simplify
> - indexing, maintain locality, and avoid some initialization tests.
> -*/
> -
> -#define top (bin_at(0)->fd) /* The topmost chunk */
> -#define last_remainder (bin_at(1)) /* remainder from last split */
> -
> -
> -/*
> - Because top initially points to its own bin with initial
> - zero size, thus forcing extension on the first malloc request,
> - we avoid having any special code in malloc to check whether
> - it even exists yet. But we still need to in malloc_extend_top.
> -*/
> -
> -#define initial_top ((mchunkptr)(bin_at(0)))
> -
> -/* Helper macro to initialize bins */
> -
> -#define IAV(i) bin_at(i), bin_at(i)
> -
> -static mbinptr av_[NAV * 2 + 2] = {
> - 0, 0,
> - IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
> - IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
> - IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
> - IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
> - IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
> - IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
> - IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
> - IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
> - IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
> - IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
> - IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
> - IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
> - IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
> - IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
> - IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
> - IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
> -};
> -
> -\f
> -
> -/* field-extraction macros */
> -
> -#define first(b) ((b)->fd)
> -#define last(b) ((b)->bk)
> -
> -/*
> - Indexing into bins
> -*/
> -
> -#define bin_index(sz) \
> -(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
> - ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
> - ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
> - ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
> - ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
> - ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
> - 126)
> -/*
> - bins for chunks < 512 are all spaced 8 bytes apart, and hold
> - identically sized chunks. This is exploited in malloc.
> -*/
> -
> -#define MAX_SMALLBIN 63
> -#define MAX_SMALLBIN_SIZE 512
> -#define SMALLBIN_WIDTH 8
> -
> -#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
> -
> -/*
> - Requests are `small' if both the corresponding and the next bin are small
> -*/
> -
> -#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
> -
> -\f
> -
> -/*
> - To help compensate for the large number of bins, a one-level index
> - structure is used for bin-by-bin searching. `binblocks' is a
> - one-word bitvector recording whether groups of BINBLOCKWIDTH bins
> - have any (possibly) non-empty bins, so they can be skipped over
> - all at once during during traversals. The bits are NOT always
> - cleared as soon as all bins in a block are empty, but instead only
> - when all are noticed to be empty during traversal in malloc.
> -*/
> -
> -#define BINBLOCKWIDTH 4 /* bins per block */
> -
> -#define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
> -
> -/* bin<->block macros */
> -
> -#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
> -#define mark_binblock(ii) (binblocks |= idx2binblock(ii))
> -#define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
> -
> -
> -\f
> -
> -
> -/* Other static bookkeeping data */
> -
> -/* variables holding tunable values */
> -
> -static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
> -static unsigned long top_pad = DEFAULT_TOP_PAD;
> -static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
> -static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
> -
> -/* The first value returned from sbrk */
> -static char* sbrk_base = (char*)(-1);
> -
> -/* The maximum memory obtained from system via sbrk */
> -static unsigned long max_sbrked_mem = 0;
> -
> -/* The maximum via either sbrk or mmap */
> -static unsigned long max_total_mem = 0;
> -
> -/* internal working copy of mallinfo */
> -static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
> -
> -/* The total memory obtained from system via sbrk */
> -#define sbrked_mem (current_mallinfo.arena)
> -
> -/* Tracking mmaps */
> -
> -static unsigned int n_mmaps = 0;
> -static unsigned int max_n_mmaps = 0;
> -static unsigned long mmapped_mem = 0;
> -static unsigned long max_mmapped_mem = 0;
> -
> -\f
> -
> -/*
> - Debugging support
> -*/
> -
> -#if DEBUG
> -
> -
> -/*
> - These routines make a number of assertions about the states
> - of data structures that should be true at all times. If any
> - are not true, it's very likely that a user program has somehow
> - trashed memory. (It's also possible that there is a coding error
> - in malloc. In which case, please report it!)
> -*/
> -
> -#if __STD_C
> -static void do_check_chunk(mchunkptr p)
> -#else
> -static void do_check_chunk(p) mchunkptr p;
> -#endif
> -{
> - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> -
> - /* No checkable chunk is mmapped */
> - assert(!chunk_is_mmapped(p));
> -
> - /* Check for legal address ... */
> - assert((char*)p >= sbrk_base);
> - if (p != top)
> - assert((char*)p + sz <= (char*)top);
> - else
> - assert((char*)p + sz <= sbrk_base + sbrked_mem);
> -
> -}
> -
> -
> -#if __STD_C
> -static void do_check_free_chunk(mchunkptr p)
> -#else
> -static void do_check_free_chunk(p) mchunkptr p;
> -#endif
> -{
> - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> - mchunkptr next = chunk_at_offset(p, sz);
> -
> - do_check_chunk(p);
> -
> - /* Check whether it claims to be free ... */
> - assert(!inuse(p));
> -
> - /* Unless a special marker, must have OK fields */
> - if ((long)sz >= (long)MINSIZE)
> - {
> - assert((sz & MALLOC_ALIGN_MASK) == 0);
> - assert(aligned_OK(chunk2mem(p)));
> - /* ... matching footer field */
> - assert(next->prev_size == sz);
> - /* ... and is fully consolidated */
> - assert(prev_inuse(p));
> - assert (next == top || inuse(next));
> -
> - /* ... and has minimally sane links */
> - assert(p->fd->bk == p);
> - assert(p->bk->fd == p);
> - }
> - else /* markers are always of size SIZE_SZ */
> - assert(sz == SIZE_SZ);
> -}
> -
> -#if __STD_C
> -static void do_check_inuse_chunk(mchunkptr p)
> -#else
> -static void do_check_inuse_chunk(p) mchunkptr p;
> -#endif
> -{
> - mchunkptr next = next_chunk(p);
> - do_check_chunk(p);
> -
> - /* Check whether it claims to be in use ... */
> - assert(inuse(p));
> -
> - /* ... and is surrounded by OK chunks.
> - Since more things can be checked with free chunks than inuse ones,
> - if an inuse chunk borders them and debug is on, it's worth doing them.
> - */
> - if (!prev_inuse(p))
> - {
> - mchunkptr prv = prev_chunk(p);
> - assert(next_chunk(prv) == p);
> - do_check_free_chunk(prv);
> - }
> - if (next == top)
> - {
> - assert(prev_inuse(next));
> - assert(chunksize(next) >= MINSIZE);
> - }
> - else if (!inuse(next))
> - do_check_free_chunk(next);
> -
> -}
> -
> -#if __STD_C
> -static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
> -#else
> -static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
> -#endif
> -{
> - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> - long room = sz - s;
> -
> - do_check_inuse_chunk(p);
> -
> - /* Legal size ... */
> - assert((long)sz >= (long)MINSIZE);
> - assert((sz & MALLOC_ALIGN_MASK) == 0);
> - assert(room >= 0);
> - assert(room < (long)MINSIZE);
> -
> - /* ... and alignment */
> - assert(aligned_OK(chunk2mem(p)));
> -
> -
> - /* ... and was allocated at front of an available chunk */
> - assert(prev_inuse(p));
> -
> -}
> -
> -
> -#define check_free_chunk(P) do_check_free_chunk(P)
> -#define check_inuse_chunk(P) do_check_inuse_chunk(P)
> -#define check_chunk(P) do_check_chunk(P)
> -#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
> -#else
> -#define check_free_chunk(P)
> -#define check_inuse_chunk(P)
> -#define check_chunk(P)
> -#define check_malloced_chunk(P,N)
> -#endif
> -
> -\f
> -
> -/*
> - Macro-based internal utilities
> -*/
> -
> -
> -/*
> - Linking chunks in bin lists.
> - Call these only with variables, not arbitrary expressions, as arguments.
> -*/
> -
> -/*
> - Place chunk p of size s in its bin, in size order,
> - putting it ahead of others of same size.
> -*/
> -
> -
> -#define frontlink(P, S, IDX, BK, FD) \
> -{ \
> - if (S < MAX_SMALLBIN_SIZE) \
> - { \
> - IDX = smallbin_index(S); \
> - mark_binblock(IDX); \
> - BK = bin_at(IDX); \
> - FD = BK->fd; \
> - P->bk = BK; \
> - P->fd = FD; \
> - FD->bk = BK->fd = P; \
> - } \
> - else \
> - { \
> - IDX = bin_index(S); \
> - BK = bin_at(IDX); \
> - FD = BK->fd; \
> - if (FD == BK) mark_binblock(IDX); \
> - else \
> - { \
> - while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
> - BK = FD->bk; \
> - } \
> - P->bk = BK; \
> - P->fd = FD; \
> - FD->bk = BK->fd = P; \
> - } \
> -}
> -
> -
> -/* take a chunk off a list */
> -
> -#define unlink(P, BK, FD) \
> -{ \
> - BK = P->bk; \
> - FD = P->fd; \
> - FD->bk = BK; \
> - BK->fd = FD; \
> -} \
> -
> -/* Place p as the last remainder */
> -
> -#define link_last_remainder(P) \
> -{ \
> - last_remainder->fd = last_remainder->bk = P; \
> - P->fd = P->bk = last_remainder; \
> -}
> -
> -/* Clear the last_remainder bin */
> -
> -#define clear_last_remainder \
> - (last_remainder->fd = last_remainder->bk = last_remainder)
> -
> -
> -\f
> -
> -
> -/* Routines dealing with mmap(). */
> -
> -#if HAVE_MMAP
> -
> -#if __STD_C
> -static mchunkptr mmap_chunk(size_t size)
> -#else
> -static mchunkptr mmap_chunk(size) size_t size;
> -#endif
> -{
> - size_t page_mask = malloc_getpagesize - 1;
> - mchunkptr p;
> -
> -#ifndef MAP_ANONYMOUS
> - static int fd = -1;
> -#endif
> -
> - if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
> -
> - /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
> - * there is no following chunk whose prev_size field could be used.
> - */
> - size = (size + SIZE_SZ + page_mask) & ~page_mask;
> -
> -#ifdef MAP_ANONYMOUS
> - p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
> - MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
> -#else /* !MAP_ANONYMOUS */
> - if (fd < 0)
> - {
> - fd = open("/dev/zero", O_RDWR);
> - if(fd < 0) return 0;
> - }
> - p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
> -#endif
> -
> - if(p == (mchunkptr)-1) return 0;
> -
> - n_mmaps++;
> - if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
> -
> - /* We demand that eight bytes into a page must be 8-byte aligned. */
> - assert(aligned_OK(chunk2mem(p)));
> -
> - /* The offset to the start of the mmapped region is stored
> - * in the prev_size field of the chunk; normally it is zero,
> - * but that can be changed in memalign().
> - */
> - p->prev_size = 0;
> - set_head(p, size|IS_MMAPPED);
> -
> - mmapped_mem += size;
> - if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
> - max_mmapped_mem = mmapped_mem;
> - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> - max_total_mem = mmapped_mem + sbrked_mem;
> - return p;
> -}
> -
> -#if __STD_C
> -static void munmap_chunk(mchunkptr p)
> -#else
> -static void munmap_chunk(p) mchunkptr p;
> -#endif
> -{
> - INTERNAL_SIZE_T size = chunksize(p);
> - int ret;
> -
> - assert (chunk_is_mmapped(p));
> - assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
> - assert((n_mmaps > 0));
> - assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
> -
> - n_mmaps--;
> - mmapped_mem -= (size + p->prev_size);
> -
> - ret = munmap((char *)p - p->prev_size, size + p->prev_size);
> -
> - /* munmap returns non-zero on failure */
> - assert(ret == 0);
> -}
> -
> -#if HAVE_MREMAP
> -
> -#if __STD_C
> -static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
> -#else
> -static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
> -#endif
> -{
> - size_t page_mask = malloc_getpagesize - 1;
> - INTERNAL_SIZE_T offset = p->prev_size;
> - INTERNAL_SIZE_T size = chunksize(p);
> - char *cp;
> -
> - assert (chunk_is_mmapped(p));
> - assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
> - assert((n_mmaps > 0));
> - assert(((size + offset) & (malloc_getpagesize-1)) == 0);
> -
> - /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
> - new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
> -
> - cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
> -
> - if (cp == (char *)-1) return 0;
> -
> - p = (mchunkptr)(cp + offset);
> -
> - assert(aligned_OK(chunk2mem(p)));
> -
> - assert((p->prev_size == offset));
> - set_head(p, (new_size - offset)|IS_MMAPPED);
> -
> - mmapped_mem -= size + offset;
> - mmapped_mem += new_size;
> - if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
> - max_mmapped_mem = mmapped_mem;
> - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> - max_total_mem = mmapped_mem + sbrked_mem;
> - return p;
> -}
> -
> -#endif /* HAVE_MREMAP */
> -
> -#endif /* HAVE_MMAP */
> -
> -
> -\f
> -
> -/*
> - Extend the top-most chunk by obtaining memory from system.
> - Main interface to sbrk (but see also malloc_trim).
> -*/
> -
> -#if __STD_C
> -static void malloc_extend_top(INTERNAL_SIZE_T nb)
> -#else
> -static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
> -#endif
> -{
> - char* brk; /* return value from sbrk */
> - INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
> - INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
> - char* new_brk; /* return of 2nd sbrk call */
> - INTERNAL_SIZE_T top_size; /* new size of top chunk */
> -
> - mchunkptr old_top = top; /* Record state of old top */
> - INTERNAL_SIZE_T old_top_size = chunksize(old_top);
> - char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
> -
> - /* Pad request with top_pad plus minimal overhead */
> -
> - INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
> - unsigned long pagesz = malloc_getpagesize;
> -
> - /* If not the first time through, round to preserve page boundary */
> - /* Otherwise, we need to correct to a page size below anyway. */
> - /* (We also correct below if an intervening foreign sbrk call.) */
> -
> - if (sbrk_base != (char*)(-1))
> - sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
> -
> - brk = (char*)(MORECORE (sbrk_size));
> -
> - /* Fail if sbrk failed or if a foreign sbrk call killed our space */
> - if (brk == (char*)(MORECORE_FAILURE) ||
> - (brk < old_end && old_top != initial_top))
> - return;
> -
> - sbrked_mem += sbrk_size;
> -
> - if (brk == old_end) /* can just add bytes to current top */
> - {
> - top_size = sbrk_size + old_top_size;
> - set_head(top, top_size | PREV_INUSE);
> - }
> - else
> - {
> - if (sbrk_base == (char*)(-1)) /* First time through. Record base */
> - sbrk_base = brk;
> - else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
> - sbrked_mem += brk - (char*)old_end;
> -
> - /* Guarantee alignment of first new chunk made from this space */
> - front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
> - if (front_misalign > 0)
> - {
> - correction = (MALLOC_ALIGNMENT) - front_misalign;
> - brk += correction;
> - }
> - else
> - correction = 0;
> -
> - /* Guarantee the next brk will be at a page boundary */
> -
> - correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
> - ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
> -
> - /* Allocate correction */
> - new_brk = (char*)(MORECORE (correction));
> - if (new_brk == (char*)(MORECORE_FAILURE)) return;
> -
> - sbrked_mem += correction;
> -
> - top = (mchunkptr)brk;
> - top_size = new_brk - brk + correction;
> - set_head(top, top_size | PREV_INUSE);
> -
> - if (old_top != initial_top)
> - {
> -
> - /* There must have been an intervening foreign sbrk call. */
> - /* A double fencepost is necessary to prevent consolidation */
> -
> - /* If not enough space to do this, then user did something very wrong */
> - if (old_top_size < MINSIZE)
> - {
> - set_head(top, PREV_INUSE); /* will force null return from malloc */
> - return;
> - }
> -
> - /* Also keep size a multiple of MALLOC_ALIGNMENT */
> - old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
> - set_head_size(old_top, old_top_size);
> - chunk_at_offset(old_top, old_top_size )->size =
> - SIZE_SZ|PREV_INUSE;
> - chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
> - SIZE_SZ|PREV_INUSE;
> - /* If possible, release the rest. */
> - if (old_top_size >= MINSIZE)
> - fREe(chunk2mem(old_top));
> - }
> - }
> -
> - if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
> - max_sbrked_mem = sbrked_mem;
> - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> - max_total_mem = mmapped_mem + sbrked_mem;
> -
> - /* We always land on a page boundary */
> - assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
> -}
> -
> -
> -\f
> -
> -/* Main public routines */
> -
> -
> -/*
> - Malloc Algorthim:
> -
> - The requested size is first converted into a usable form, `nb'.
> - This currently means to add 4 bytes overhead plus possibly more to
> - obtain 8-byte alignment and/or to obtain a size of at least
> - MINSIZE (currently 16 bytes), the smallest allocatable size.
> - (All fits are considered `exact' if they are within MINSIZE bytes.)
> -
> - From there, the first successful of the following steps is taken:
> -
> - 1. The bin corresponding to the request size is scanned, and if
> - a chunk of exactly the right size is found, it is taken.
> -
> - 2. The most recently remaindered chunk is used if it is big
> - enough. This is a form of (roving) first fit, used only in
> - the absence of exact fits. Runs of consecutive requests use
> - the remainder of the chunk used for the previous such request
> - whenever possible. This limited use of a first-fit style
> - allocation strategy tends to give contiguous chunks
> - coextensive lifetimes, which improves locality and can reduce
> - fragmentation in the long run.
> -
> - 3. Other bins are scanned in increasing size order, using a
> - chunk big enough to fulfill the request, and splitting off
> - any remainder. This search is strictly by best-fit; i.e.,
> - the smallest (with ties going to approximately the least
> - recently used) chunk that fits is selected.
> -
> - 4. If large enough, the chunk bordering the end of memory
> - (`top') is split off. (This use of `top' is in accord with
> - the best-fit search rule. In effect, `top' is treated as
> - larger (and thus less well fitting) than any other available
> - chunk since it can be extended to be as large as necessary
> - (up to system limitations).
> -
> - 5. If the request size meets the mmap threshold and the
> - system supports mmap, and there are few enough currently
> - allocated mmapped regions, and a call to mmap succeeds,
> - the request is allocated via direct memory mapping.
> -
> - 6. Otherwise, the top of memory is extended by
> - obtaining more space from the system (normally using sbrk,
> - but definable to anything else via the MORECORE macro).
> - Memory is gathered from the system (in system page-sized
> - units) in a way that allows chunks obtained across different
> - sbrk calls to be consolidated, but does not require
> - contiguous memory. Thus, it should be safe to intersperse
> - mallocs with other sbrk calls.
> -
> -
> - All allocations are made from the the `lowest' part of any found
> - chunk. (The implementation invariant is that prev_inuse is
> - always true of any allocated chunk; i.e., that each allocated
> - chunk borders either a previously allocated and still in-use chunk,
> - or the base of its memory arena.)
> -
> -*/
> -
> -#if __STD_C
> -Void_t* mALLOc(size_t bytes)
> -#else
> -Void_t* mALLOc(bytes) size_t bytes;
> -#endif
> -{
> - mchunkptr victim; /* inspected/selected chunk */
> - INTERNAL_SIZE_T victim_size; /* its size */
> - int idx; /* index for bin traversal */
> - mbinptr bin; /* associated bin */
> - mchunkptr remainder; /* remainder from a split */
> - long remainder_size; /* its size */
> - int remainder_index; /* its bin index */
> - unsigned long block; /* block traverser bit */
> - int startidx; /* first bin of a traversed block */
> - mchunkptr fwd; /* misc temp for linking */
> - mchunkptr bck; /* misc temp for linking */
> - mbinptr q; /* misc temp */
> -
> - INTERNAL_SIZE_T nb;
> -
> - if ((long)bytes < 0) return 0;
> -
> - nb = request2size(bytes); /* padded request size; */
> -
> - /* Check for exact match in a bin */
> -
> - if (is_small_request(nb)) /* Faster version for small requests */
> - {
> - idx = smallbin_index(nb);
> -
> - /* No traversal or size check necessary for small bins. */
> -
> - q = bin_at(idx);
> - victim = last(q);
> -
> - /* Also scan the next one, since it would have a remainder < MINSIZE */
> - if (victim == q)
> - {
> - q = next_bin(q);
> - victim = last(q);
> - }
> - if (victim != q)
> - {
> - victim_size = chunksize(victim);
> - unlink(victim, bck, fwd);
> - set_inuse_bit_at_offset(victim, victim_size);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> -
> - idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
> -
> - }
> - else
> - {
> - idx = bin_index(nb);
> - bin = bin_at(idx);
> -
> - for (victim = last(bin); victim != bin; victim = victim->bk)
> - {
> - victim_size = chunksize(victim);
> - remainder_size = victim_size - nb;
> -
> - if (remainder_size >= (long)MINSIZE) /* too big */
> - {
> - --idx; /* adjust to rescan below after checking last remainder */
> - break;
> - }
> -
> - else if (remainder_size >= 0) /* exact fit */
> - {
> - unlink(victim, bck, fwd);
> - set_inuse_bit_at_offset(victim, victim_size);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> - }
> -
> - ++idx;
> -
> - }
> -
> - /* Try to use the last split-off remainder */
> -
> - if ( (victim = last_remainder->fd) != last_remainder)
> - {
> - victim_size = chunksize(victim);
> - remainder_size = victim_size - nb;
> -
> - if (remainder_size >= (long)MINSIZE) /* re-split */
> - {
> - remainder = chunk_at_offset(victim, nb);
> - set_head(victim, nb | PREV_INUSE);
> - link_last_remainder(remainder);
> - set_head(remainder, remainder_size | PREV_INUSE);
> - set_foot(remainder, remainder_size);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> -
> - clear_last_remainder;
> -
> - if (remainder_size >= 0) /* exhaust */
> - {
> - set_inuse_bit_at_offset(victim, victim_size);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> -
> - /* Else place in bin */
> -
> - frontlink(victim, victim_size, remainder_index, bck, fwd);
> - }
> -
> - /*
> - If there are any possibly nonempty big-enough blocks,
> - search for best fitting chunk by scanning bins in blockwidth units.
> - */
> -
> - if ( (block = idx2binblock(idx)) <= binblocks)
> - {
> -
> - /* Get to the first marked block */
> -
> - if ( (block & binblocks) == 0)
> - {
> - /* force to an even block boundary */
> - idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
> - block <<= 1;
> - while ((block & binblocks) == 0)
> - {
> - idx += BINBLOCKWIDTH;
> - block <<= 1;
> - }
> - }
> -
> - /* For each possibly nonempty block ... */
> - for (;;)
> - {
> - startidx = idx; /* (track incomplete blocks) */
> - q = bin = bin_at(idx);
> -
> - /* For each bin in this block ... */
> - do
> - {
> - /* Find and use first big enough chunk ... */
> -
> - for (victim = last(bin); victim != bin; victim = victim->bk)
> - {
> - victim_size = chunksize(victim);
> - remainder_size = victim_size - nb;
> -
> - if (remainder_size >= (long)MINSIZE) /* split */
> - {
> - remainder = chunk_at_offset(victim, nb);
> - set_head(victim, nb | PREV_INUSE);
> - unlink(victim, bck, fwd);
> - link_last_remainder(remainder);
> - set_head(remainder, remainder_size | PREV_INUSE);
> - set_foot(remainder, remainder_size);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> -
> - else if (remainder_size >= 0) /* take */
> - {
> - set_inuse_bit_at_offset(victim, victim_size);
> - unlink(victim, bck, fwd);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> - }
> -
> - }
> -
> - bin = next_bin(bin);
> -
> - } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
> -
> - /* Clear out the block bit. */
> -
> - do /* Possibly backtrack to try to clear a partial block */
> - {
> - if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
> - {
> - binblocks &= ~block;
> - break;
> - }
> - --startidx;
> - q = prev_bin(q);
> - } while (first(q) == q);
> -
> - /* Get to the next possibly nonempty block */
> -
> - if ( (block <<= 1) <= binblocks && (block != 0) )
> - {
> - while ((block & binblocks) == 0)
> - {
> - idx += BINBLOCKWIDTH;
> - block <<= 1;
> - }
> - }
> - else
> - break;
> - }
> - }
> -
> -
> - /* Try to use top chunk */
> -
> - /* Require that there be a remainder, ensuring top always exists */
> - if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
> - {
> -
> -#if HAVE_MMAP
> - /* If big and would otherwise need to extend, try to use mmap instead */
> - if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
> - (victim = mmap_chunk(nb)) != 0)
> - return chunk2mem(victim);
> -#endif
> -
> - /* Try to extend */
> - malloc_extend_top(nb);
> - if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
> - return 0; /* propagate failure */
> - }
> -
> - victim = top;
> - set_head(victim, nb | PREV_INUSE);
> - top = chunk_at_offset(victim, nb);
> - set_head(top, remainder_size | PREV_INUSE);
> - check_malloced_chunk(victim, nb);
> - return chunk2mem(victim);
> -
> -}
> -
> -
> -\f
> -
> -/*
> -
> - free() algorithm :
> -
> - cases:
> -
> - 1. free(0) has no effect.
> -
> - 2. If the chunk was allocated via mmap, it is release via munmap().
> -
> - 3. If a returned chunk borders the current high end of memory,
> - it is consolidated into the top, and if the total unused
> - topmost memory exceeds the trim threshold, malloc_trim is
> - called.
> -
> - 4. Other chunks are consolidated as they arrive, and
> - placed in corresponding bins. (This includes the case of
> - consolidating with the current `last_remainder').
> -
> -*/
> -
> -
> -#if __STD_C
> -void fREe(Void_t* mem)
> -#else
> -void fREe(mem) Void_t* mem;
> -#endif
> -{
> - mchunkptr p; /* chunk corresponding to mem */
> - INTERNAL_SIZE_T hd; /* its head field */
> - INTERNAL_SIZE_T sz; /* its size */
> - int idx; /* its bin index */
> - mchunkptr next; /* next contiguous chunk */
> - INTERNAL_SIZE_T nextsz; /* its size */
> - INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
> - mchunkptr bck; /* misc temp for linking */
> - mchunkptr fwd; /* misc temp for linking */
> - int islr; /* track whether merging with last_remainder */
> -
> - if (mem == 0) /* free(0) has no effect */
> - return;
> -
> - p = mem2chunk(mem);
> - hd = p->size;
> -
> -#if HAVE_MMAP
> - if (hd & IS_MMAPPED) /* release mmapped memory. */
> - {
> - munmap_chunk(p);
> - return;
> - }
> -#endif
> -
> - check_inuse_chunk(p);
> -
> - sz = hd & ~PREV_INUSE;
> - next = chunk_at_offset(p, sz);
> - nextsz = chunksize(next);
> -
> - if (next == top) /* merge with top */
> - {
> - sz += nextsz;
> -
> - if (!(hd & PREV_INUSE)) /* consolidate backward */
> - {
> - prevsz = p->prev_size;
> - p = chunk_at_offset(p, -((long) prevsz));
> - sz += prevsz;
> - unlink(p, bck, fwd);
> - }
> -
> - set_head(p, sz | PREV_INUSE);
> - top = p;
> - if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
> - malloc_trim(top_pad);
> - return;
> - }
> -
> - set_head(next, nextsz); /* clear inuse bit */
> -
> - islr = 0;
> -
> - if (!(hd & PREV_INUSE)) /* consolidate backward */
> - {
> - prevsz = p->prev_size;
> - p = chunk_at_offset(p, -((long) prevsz));
> - sz += prevsz;
> -
> - if (p->fd == last_remainder) /* keep as last_remainder */
> - islr = 1;
> - else
> - unlink(p, bck, fwd);
> - }
> -
> - if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
> - {
> - sz += nextsz;
> -
> - if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
> - {
> - islr = 1;
> - link_last_remainder(p);
> - }
> - else
> - unlink(next, bck, fwd);
> - }
> -
> -
> - set_head(p, sz | PREV_INUSE);
> - set_foot(p, sz);
> - if (!islr)
> - frontlink(p, sz, idx, bck, fwd);
> -}
> -
> -
> -\f
> -
> -
> -/*
> -
> - Realloc algorithm:
> -
> - Chunks that were obtained via mmap cannot be extended or shrunk
> - unless HAVE_MREMAP is defined, in which case mremap is used.
> - Otherwise, if their reallocation is for additional space, they are
> - copied. If for less, they are just left alone.
> -
> - Otherwise, if the reallocation is for additional space, and the
> - chunk can be extended, it is, else a malloc-copy-free sequence is
> - taken. There are several different ways that a chunk could be
> - extended. All are tried:
> -
> - * Extending forward into following adjacent free chunk.
> - * Shifting backwards, joining preceding adjacent space
> - * Both shifting backwards and extending forward.
> - * Extending into newly sbrked space
> -
> - Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
> - size argument of zero (re)allocates a minimum-sized chunk.
> -
> - If the reallocation is for less space, and the new request is for
> - a `small' (<512 bytes) size, then the newly unused space is lopped
> - off and freed.
> -
> - The old unix realloc convention of allowing the last-free'd chunk
> - to be used as an argument to realloc is no longer supported.
> - I don't know of any programs still relying on this feature,
> - and allowing it would also allow too many other incorrect
> - usages of realloc to be sensible.
> -
> -
> -*/
> -
> -
> -#if __STD_C
> -Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
> -#else
> -Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
> -#endif
> -{
> - INTERNAL_SIZE_T nb; /* padded request size */
> -
> - mchunkptr oldp; /* chunk corresponding to oldmem */
> - INTERNAL_SIZE_T oldsize; /* its size */
> -
> - mchunkptr newp; /* chunk to return */
> - INTERNAL_SIZE_T newsize; /* its size */
> - Void_t* newmem; /* corresponding user mem */
> -
> - mchunkptr next; /* next contiguous chunk after oldp */
> - INTERNAL_SIZE_T nextsize; /* its size */
> -
> - mchunkptr prev; /* previous contiguous chunk before oldp */
> - INTERNAL_SIZE_T prevsize; /* its size */
> -
> - mchunkptr remainder; /* holds split off extra space from newp */
> - INTERNAL_SIZE_T remainder_size; /* its size */
> -
> - mchunkptr bck; /* misc temp for linking */
> - mchunkptr fwd; /* misc temp for linking */
> -
> -#ifdef REALLOC_ZERO_BYTES_FREES
> - if (bytes == 0) { fREe(oldmem); return 0; }
> -#endif
> -
> - if ((long)bytes < 0) return 0;
> -
> - /* realloc of null is supposed to be same as malloc */
> - if (oldmem == 0) return mALLOc(bytes);
> -
> - newp = oldp = mem2chunk(oldmem);
> - newsize = oldsize = chunksize(oldp);
> -
> -
> - nb = request2size(bytes);
> -
> -#if HAVE_MMAP
> - if (chunk_is_mmapped(oldp))
> - {
> -#if HAVE_MREMAP
> - newp = mremap_chunk(oldp, nb);
> - if(newp) return chunk2mem(newp);
> -#endif
> - /* Note the extra SIZE_SZ overhead. */
> - if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
> - /* Must alloc, copy, free. */
> - newmem = mALLOc(bytes);
> - if (newmem == 0) return 0; /* propagate failure */
> - MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
> - munmap_chunk(oldp);
> - return newmem;
> - }
> -#endif
> -
> - check_inuse_chunk(oldp);
> -
> - if ((long)(oldsize) < (long)(nb))
> - {
> -
> - /* Try expanding forward */
> -
> - next = chunk_at_offset(oldp, oldsize);
> - if (next == top || !inuse(next))
> - {
> - nextsize = chunksize(next);
> -
> - /* Forward into top only if a remainder */
> - if (next == top)
> - {
> - if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
> - {
> - newsize += nextsize;
> - top = chunk_at_offset(oldp, nb);
> - set_head(top, (newsize - nb) | PREV_INUSE);
> - set_head_size(oldp, nb);
> - return chunk2mem(oldp);
> - }
> - }
> -
> - /* Forward into next chunk */
> - else if (((long)(nextsize + newsize) >= (long)(nb)))
> - {
> - unlink(next, bck, fwd);
> - newsize += nextsize;
> - goto split;
> - }
> - }
> - else
> - {
> - next = 0;
> - nextsize = 0;
> - }
> -
> - /* Try shifting backwards. */
> -
> - if (!prev_inuse(oldp))
> - {
> - prev = prev_chunk(oldp);
> - prevsize = chunksize(prev);
> -
> - /* try forward + backward first to save a later consolidation */
> -
> - if (next != 0)
> - {
> - /* into top */
> - if (next == top)
> - {
> - if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
> - {
> - unlink(prev, bck, fwd);
> - newp = prev;
> - newsize += prevsize + nextsize;
> - newmem = chunk2mem(newp);
> - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> - top = chunk_at_offset(newp, nb);
> - set_head(top, (newsize - nb) | PREV_INUSE);
> - set_head_size(newp, nb);
> - return newmem;
> - }
> - }
> -
> - /* into next chunk */
> - else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
> - {
> - unlink(next, bck, fwd);
> - unlink(prev, bck, fwd);
> - newp = prev;
> - newsize += nextsize + prevsize;
> - newmem = chunk2mem(newp);
> - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> - goto split;
> - }
> - }
> -
> - /* backward only */
> - if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
> - {
> - unlink(prev, bck, fwd);
> - newp = prev;
> - newsize += prevsize;
> - newmem = chunk2mem(newp);
> - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> - goto split;
> - }
> - }
> -
> - /* Must allocate */
> -
> - newmem = mALLOc (bytes);
> -
> - if (newmem == 0) /* propagate failure */
> - return 0;
> -
> - /* Avoid copy if newp is next chunk after oldp. */
> - /* (This can only happen when new chunk is sbrk'ed.) */
> -
> - if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
> - {
> - newsize += chunksize(newp);
> - newp = oldp;
> - goto split;
> - }
> -
> - /* Otherwise copy, free, and exit */
> - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> - fREe(oldmem);
> - return newmem;
> - }
> -
> -
> - split: /* split off extra room in old or expanded chunk */
> -
> - if (newsize - nb >= MINSIZE) /* split off remainder */
> - {
> - remainder = chunk_at_offset(newp, nb);
> - remainder_size = newsize - nb;
> - set_head_size(newp, nb);
> - set_head(remainder, remainder_size | PREV_INUSE);
> - set_inuse_bit_at_offset(remainder, remainder_size);
> - fREe(chunk2mem(remainder)); /* let free() deal with it */
> - }
> - else
> - {
> - set_head_size(newp, newsize);
> - set_inuse_bit_at_offset(newp, newsize);
> - }
> -
> - check_inuse_chunk(newp);
> - return chunk2mem(newp);
> -}
> -
> -
> -\f
> -
> -/*
> -
> - memalign algorithm:
> -
> - memalign requests more than enough space from malloc, finds a spot
> - within that chunk that meets the alignment request, and then
> - possibly frees the leading and trailing space.
> -
> - The alignment argument must be a power of two. This property is not
> - checked by memalign, so misuse may result in random runtime errors.
> -
> - 8-byte alignment is guaranteed by normal malloc calls, so don't
> - bother calling memalign with an argument of 8 or less.
> -
> - Overreliance on memalign is a sure way to fragment space.
> -
> -*/
> -
> -
> -#if __STD_C
> -Void_t* mEMALIGn(size_t alignment, size_t bytes)
> -#else
> -Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
> -#endif
> -{
> - INTERNAL_SIZE_T nb; /* padded request size */
> - char* m; /* memory returned by malloc call */
> - mchunkptr p; /* corresponding chunk */
> - char* brk; /* alignment point within p */
> - mchunkptr newp; /* chunk to return */
> - INTERNAL_SIZE_T newsize; /* its size */
> - INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
> - mchunkptr remainder; /* spare room at end to split off */
> - long remainder_size; /* its size */
> -
> - if ((long)bytes < 0) return 0;
> -
> - /* If need less alignment than we give anyway, just relay to malloc */
> -
> - if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
> -
> - /* Otherwise, ensure that it is at least a minimum chunk size */
> -
> - if (alignment < MINSIZE) alignment = MINSIZE;
> -
> - /* Call malloc with worst case padding to hit alignment. */
> -
> - nb = request2size(bytes);
> - m = (char*)(mALLOc(nb + alignment + MINSIZE));
> -
> - if (m == 0) return 0; /* propagate failure */
> -
> - p = mem2chunk(m);
> -
> - if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
> - {
> -#if HAVE_MMAP
> - if(chunk_is_mmapped(p))
> - return chunk2mem(p); /* nothing more to do */
> -#endif
> - }
> - else /* misaligned */
> - {
> - /*
> - Find an aligned spot inside chunk.
> - Since we need to give back leading space in a chunk of at
> - least MINSIZE, if the first calculation places us at
> - a spot with less than MINSIZE leader, we can move to the
> - next aligned spot -- we've allocated enough total room so that
> - this is always possible.
> - */
> -
> - brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
> - if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
> -
> - newp = (mchunkptr)brk;
> - leadsize = brk - (char*)(p);
> - newsize = chunksize(p) - leadsize;
> -
> -#if HAVE_MMAP
> - if(chunk_is_mmapped(p))
> - {
> - newp->prev_size = p->prev_size + leadsize;
> - set_head(newp, newsize|IS_MMAPPED);
> - return chunk2mem(newp);
> - }
> -#endif
> -
> - /* give back leader, use the rest */
> -
> - set_head(newp, newsize | PREV_INUSE);
> - set_inuse_bit_at_offset(newp, newsize);
> - set_head_size(p, leadsize);
> - fREe(chunk2mem(p));
> - p = newp;
> -
> - assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
> - }
> -
> - /* Also give back spare room at the end */
> -
> - remainder_size = chunksize(p) - nb;
> -
> - if (remainder_size >= (long)MINSIZE)
> - {
> - remainder = chunk_at_offset(p, nb);
> - set_head(remainder, remainder_size | PREV_INUSE);
> - set_head_size(p, nb);
> - fREe(chunk2mem(remainder));
> - }
> -
> - check_inuse_chunk(p);
> - return chunk2mem(p);
> -
> -}
> -
> -\f
> -
> -
> -/*
> - valloc just invokes memalign with alignment argument equal
> - to the page size of the system (or as near to this as can
> - be figured out from all the includes/defines above.)
> -*/
> -
> -#if __STD_C
> -Void_t* vALLOc(size_t bytes)
> -#else
> -Void_t* vALLOc(bytes) size_t bytes;
> -#endif
> -{
> - return mEMALIGn (malloc_getpagesize, bytes);
> -}
> -
> -/*
> - pvalloc just invokes valloc for the nearest pagesize
> - that will accommodate request
> -*/
> -
> -
> -#if __STD_C
> -Void_t* pvALLOc(size_t bytes)
> -#else
> -Void_t* pvALLOc(bytes) size_t bytes;
> -#endif
> -{
> - size_t pagesize = malloc_getpagesize;
> - return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
> -}
> -
> -/*
> -
> - calloc calls malloc, then zeroes out the allocated chunk.
> -
> -*/
> -
> -#if __STD_C
> -Void_t* cALLOc(size_t n, size_t elem_size)
> -#else
> -Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
> -#endif
> -{
> - mchunkptr p;
> - INTERNAL_SIZE_T csz;
> -
> - INTERNAL_SIZE_T sz = n * elem_size;
> -
> -
> - /* check if expand_top called, in which case don't need to clear */
> -#if MORECORE_CLEARS
> - mchunkptr oldtop = top;
> - INTERNAL_SIZE_T oldtopsize = chunksize(top);
> -#endif
> - Void_t* mem = mALLOc (sz);
> -
> - if ((long)n < 0) return 0;
> -
> - if (mem == 0)
> - return 0;
> - else
> - {
> - p = mem2chunk(mem);
> -
> - /* Two optional cases in which clearing not necessary */
> -
> -
> -#if HAVE_MMAP
> - if (chunk_is_mmapped(p)) return mem;
> -#endif
> -
> - csz = chunksize(p);
> -
> -#if MORECORE_CLEARS
> - if (p == oldtop && csz > oldtopsize)
> - {
> - /* clear only the bytes from non-freshly-sbrked memory */
> - csz = oldtopsize;
> - }
> -#endif
> -
> - MALLOC_ZERO(mem, csz - SIZE_SZ);
> - return mem;
> - }
> -}
> -
> -/*
> -
> - cfree just calls free. It is needed/defined on some systems
> - that pair it with calloc, presumably for odd historical reasons.
> -
> -*/
> -
> -#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
> -#if __STD_C
> -void cfree(Void_t *mem)
> -#else
> -void cfree(mem) Void_t *mem;
> -#endif
> -{
> - fREe(mem);
> -}
> -#endif
> -
> -\f
> -
> -/*
> -
> - Malloc_trim gives memory back to the system (via negative
> - arguments to sbrk) if there is unused memory at the `high' end of
> - the malloc pool. You can call this after freeing large blocks of
> - memory to potentially reduce the system-level memory requirements
> - of a program. However, it cannot guarantee to reduce memory. Under
> - some allocation patterns, some large free blocks of memory will be
> - locked between two used chunks, so they cannot be given back to
> - the system.
> -
> - The `pad' argument to malloc_trim represents the amount of free
> - trailing space to leave untrimmed. If this argument is zero,
> - only the minimum amount of memory to maintain internal data
> - structures will be left (one page or less). Non-zero arguments
> - can be supplied to maintain enough trailing space to service
> - future expected allocations without having to re-obtain memory
> - from the system.
> -
> - Malloc_trim returns 1 if it actually released any memory, else 0.
> -
> -*/
> -
> -#if __STD_C
> -int malloc_trim(size_t pad)
> -#else
> -int malloc_trim(pad) size_t pad;
> -#endif
> -{
> - long top_size; /* Amount of top-most memory */
> - long extra; /* Amount to release */
> - char* current_brk; /* address returned by pre-check sbrk call */
> - char* new_brk; /* address returned by negative sbrk call */
> -
> - unsigned long pagesz = malloc_getpagesize;
> -
> - top_size = chunksize(top);
> - extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
> -
> - if (extra < (long)pagesz) /* Not enough memory to release */
> - return 0;
> -
> - else
> - {
> - /* Test to make sure no one else called sbrk */
> - current_brk = (char*)(MORECORE (0));
> - if (current_brk != (char*)(top) + top_size)
> - return 0; /* Apparently we don't own memory; must fail */
> -
> - else
> - {
> - new_brk = (char*)(MORECORE (-extra));
> -
> - if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
> - {
> - /* Try to figure out what we have */
> - current_brk = (char*)(MORECORE (0));
> - top_size = current_brk - (char*)top;
> - if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
> - {
> - sbrked_mem = current_brk - sbrk_base;
> - set_head(top, top_size | PREV_INUSE);
> - }
> - check_chunk(top);
> - return 0;
> - }
> -
> - else
> - {
> - /* Success. Adjust top accordingly. */
> - set_head(top, (top_size - extra) | PREV_INUSE);
> - sbrked_mem -= extra;
> - check_chunk(top);
> - return 1;
> - }
> - }
> - }
> -}
> -
> -\f
> -
> -/*
> - malloc_usable_size:
> -
> - This routine tells you how many bytes you can actually use in an
> - allocated chunk, which may be more than you requested (although
> - often not). You can use this many bytes without worrying about
> - overwriting other allocated objects. Not a particularly great
> - programming practice, but still sometimes useful.
> -
> -*/
> -
> -#if __STD_C
> -size_t malloc_usable_size(Void_t* mem)
> -#else
> -size_t malloc_usable_size(mem) Void_t* mem;
> -#endif
> -{
> - mchunkptr p;
> - if (mem == 0)
> - return 0;
> - else
> - {
> - p = mem2chunk(mem);
> - if(!chunk_is_mmapped(p))
> - {
> - if (!inuse(p)) return 0;
> - check_inuse_chunk(p);
> - return chunksize(p) - SIZE_SZ;
> - }
> - return chunksize(p) - 2*SIZE_SZ;
> - }
> -}
> -
> -
> -\f
> -
> -/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
> -
> -static void malloc_update_mallinfo()
> -{
> - int i;
> - mbinptr b;
> - mchunkptr p;
> -#if DEBUG
> - mchunkptr q;
> -#endif
> -
> - INTERNAL_SIZE_T avail = chunksize(top);
> - int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
> -
> - for (i = 1; i < NAV; ++i)
> - {
> - b = bin_at(i);
> - for (p = last(b); p != b; p = p->bk)
> - {
> -#if DEBUG
> - check_free_chunk(p);
> - for (q = next_chunk(p);
> - q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
> - q = next_chunk(q))
> - check_inuse_chunk(q);
> -#endif
> - avail += chunksize(p);
> - navail++;
> - }
> - }
> -
> - current_mallinfo.ordblks = navail;
> - current_mallinfo.uordblks = sbrked_mem - avail;
> - current_mallinfo.fordblks = avail;
> - current_mallinfo.hblks = n_mmaps;
> - current_mallinfo.hblkhd = mmapped_mem;
> - current_mallinfo.keepcost = chunksize(top);
> -
> -}
> -
> -\f
> -
> -/*
> -
> - malloc_stats:
> -
> - Prints on stderr the amount of space obtain from the system (both
> - via sbrk and mmap), the maximum amount (which may be more than
> - current if malloc_trim and/or munmap got called), the maximum
> - number of simultaneous mmap regions used, and the current number
> - of bytes allocated via malloc (or realloc, etc) but not yet
> - freed. (Note that this is the number of bytes allocated, not the
> - number requested. It will be larger than the number requested
> - because of alignment and bookkeeping overhead.)
> -
> -*/
> -
> -void malloc_stats()
> -{
> - malloc_update_mallinfo();
> - fprintf(stderr, "max system bytes = %10u\n",
> - (unsigned int)(max_total_mem));
> - fprintf(stderr, "system bytes = %10u\n",
> - (unsigned int)(sbrked_mem + mmapped_mem));
> - fprintf(stderr, "in use bytes = %10u\n",
> - (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
> -#if HAVE_MMAP
> - fprintf(stderr, "max mmap regions = %10u\n",
> - (unsigned int)max_n_mmaps);
> -#endif
> -}
> -
> -/*
> - mallinfo returns a copy of updated current mallinfo.
> -*/
> -
> -struct mallinfo mALLINFo()
> -{
> - malloc_update_mallinfo();
> - return current_mallinfo;
> -}
> -
> -
> -\f
> -
> -/*
> - mallopt:
> -
> - mallopt is the general SVID/XPG interface to tunable parameters.
> - The format is to provide a (parameter-number, parameter-value) pair.
> - mallopt then sets the corresponding parameter to the argument
> - value if it can (i.e., so long as the value is meaningful),
> - and returns 1 if successful else 0.
> -
> - See descriptions of tunable parameters above.
> -
> -*/
> -
> -#if __STD_C
> -int mALLOPt(int param_number, int value)
> -#else
> -int mALLOPt(param_number, value) int param_number; int value;
> -#endif
> -{
> - switch(param_number)
> - {
> - case M_TRIM_THRESHOLD:
> - trim_threshold = value; return 1;
> - case M_TOP_PAD:
> - top_pad = value; return 1;
> - case M_MMAP_THRESHOLD:
> - mmap_threshold = value; return 1;
> - case M_MMAP_MAX:
> -#if HAVE_MMAP
> - n_mmaps_max = value; return 1;
> -#else
> - if (value != 0) return 0; else n_mmaps_max = value; return 1;
> -#endif
> -
> - default:
> - return 0;
> - }
> -}
> -
> -/*
> -
> -History:
> -
> - V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
> - * return null for negative arguments
> - * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
> - * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
> - (e.g. WIN32 platforms)
> - * Cleanup up header file inclusion for WIN32 platforms
> - * Cleanup code to avoid Microsoft Visual C++ compiler complaints
> - * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
> - memory allocation routines
> - * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
> - * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
> - usage of 'assert' in non-WIN32 code
> - * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
> - avoid infinite loop
> - * Always call 'fREe()' rather than 'free()'
> -
> - V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
> - * Fixed ordering problem with boundary-stamping
> -
> - V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
> - * Added pvalloc, as recommended by H.J. Liu
> - * Added 64bit pointer support mainly from Wolfram Gloger
> - * Added anonymously donated WIN32 sbrk emulation
> - * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
> - * malloc_extend_top: fix mask error that caused wastage after
> - foreign sbrks
> - * Add linux mremap support code from HJ Liu
> -
> - V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
> - * Integrated most documentation with the code.
> - * Add support for mmap, with help from
> - Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
> - * Use last_remainder in more cases.
> - * Pack bins using idea from colin@nyx10.cs.du.edu
> - * Use ordered bins instead of best-fit threshhold
> - * Eliminate block-local decls to simplify tracing and debugging.
> - * Support another case of realloc via move into top
> - * Fix error occuring when initial sbrk_base not word-aligned.
> - * Rely on page size for units instead of SBRK_UNIT to
> - avoid surprises about sbrk alignment conventions.
> - * Add mallinfo, mallopt. Thanks to Raymond Nijssen
> - (raymond@es.ele.tue.nl) for the suggestion.
> - * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
> - * More precautions for cases where other routines call sbrk,
> - courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
> - * Added macros etc., allowing use in linux libc from
> - H.J. Lu (hjl@gnu.ai.mit.edu)
> - * Inverted this history list
> -
> - V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
> - * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
> - * Removed all preallocation code since under current scheme
> - the work required to undo bad preallocations exceeds
> - the work saved in good cases for most test programs.
> - * No longer use return list or unconsolidated bins since
> - no scheme using them consistently outperforms those that don't
> - given above changes.
> - * Use best fit for very large chunks to prevent some worst-cases.
> - * Added some support for debugging
> -
> - V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
> - * Removed footers when chunks are in use. Thanks to
> - Paul Wilson (wilson@cs.texas.edu) for the suggestion.
> -
> - V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
> - * Added malloc_trim, with help from Wolfram Gloger
> - (wmglo@Dent.MED.Uni-Muenchen.DE).
> -
> - V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
> -
> - V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
> - * realloc: try to expand in both directions
> - * malloc: swap order of clean-bin strategy;
> - * realloc: only conditionally expand backwards
> - * Try not to scavenge used bins
> - * Use bin counts as a guide to preallocation
> - * Occasionally bin return list chunks in first scan
> - * Add a few optimizations from colin@nyx10.cs.du.edu
> -
> - V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
> - * faster bin computation & slightly different binning
> - * merged all consolidations to one part of malloc proper
> - (eliminating old malloc_find_space & malloc_clean_bin)
> - * Scan 2 returns chunks (not just 1)
> - * Propagate failure in realloc if malloc returns 0
> - * Add stuff to allow compilation on non-ANSI compilers
> - from kpv@research.att.com
> -
> - V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
> - * removed potential for odd address access in prev_chunk
> - * removed dependency on getpagesize.h
> - * misc cosmetics and a bit more internal documentation
> - * anticosmetics: mangled names in macros to evade debugger strangeness
> - * tested on sparc, hp-700, dec-mips, rs6000
> - with gcc & native cc (hp, dec only) allowing
> - Detlefs & Zorn comparison study (in SIGPLAN Notices.)
> -
> - Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
> - * Based loosely on libg++-1.2X malloc. (It retains some of the overall
> - structure of old version, but most details differ.)
> -
> -*/
>
> _______________________________________________
> barebox mailing list
> barebox@lists.infradead.org
> http://lists.infradead.org/mailman/listinfo/barebox
--
Pengutronix e.K. | |
Industrial Linux Solutions | http://www.pengutronix.de/ |
Peiner Str. 6-8, 31137 Hildesheim, Germany | Phone: +49-5121-206917-0 |
Amtsgericht Hildesheim, HRA 2686 | Fax: +49-5121-206917-5555 |
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
next prev parent reply other threads:[~2010-12-21 9:35 UTC|newest]
Thread overview: 41+ messages / expand[flat|nested] mbox.gz Atom feed top
2010-12-20 22:30 my IXP4xx-related and other patches Krzysztof Halasa
2010-12-20 22:40 ` [PATCH 1] Delete unused file common/dlmalloc.src Krzysztof Halasa
2010-12-21 9:34 ` Sascha Hauer [this message]
2010-12-20 22:42 ` [PATCH 2] Remove unused eth_get_name() prototype Krzysztof Halasa
2010-12-20 22:44 ` [PATCH 3] Flash CFI: removed unused 'size' variable Krzysztof Halasa
2010-12-20 22:45 ` [PATCH 4] Fix help text for "loadb" and "loady" commands Krzysztof Halasa
2010-12-20 22:54 ` [PATCH 5] Fix error handling with malloc, memalign etc. Memalign() can't fail now Krzysztof Halasa
2010-12-21 8:58 ` Sascha Hauer
2010-12-22 0:58 ` Jean-Christophe PLAGNIOL-VILLARD
2010-12-22 19:00 ` Krzysztof Halasa
2010-12-23 11:25 ` Krzysztof Halasa
2010-12-23 10:36 ` Sascha Hauer
2010-12-20 22:58 ` [PATCH 6] ARM: support big/little endian switching in "bootz" Krzysztof Halasa
2010-12-21 7:41 ` Sascha Hauer
2010-12-22 1:00 ` Jean-Christophe PLAGNIOL-VILLARD
2010-12-22 18:55 ` Krzysztof Halasa
2010-12-23 10:47 ` Sascha Hauer
2010-12-20 23:01 ` [PATCH 7] Fix top-level Makefile to work with GNU make 3.82 Krzysztof Halasa
2010-12-20 23:02 ` [PATCH 8] Cosmetic fixes, including format attributes for printf() and friends Krzysztof Halasa
2010-12-20 23:04 ` [PATCH 9] ARM: support big-endian processors Krzysztof Halasa
2010-12-20 23:06 ` [PATCH 10] ARM: Add support for IXP4xx CPU and for Goramo Multilink router platform Krzysztof Halasa
2010-12-21 7:42 ` Belisko Marek
2010-12-21 9:25 ` Sascha Hauer
2010-12-21 9:30 ` Juergen Beisert
2010-12-21 8:35 ` Sascha Hauer
2010-12-22 0:48 ` Krzysztof Halasa
2010-12-22 0:57 ` Jean-Christophe PLAGNIOL-VILLARD
2010-12-22 12:46 ` Sascha Hauer
2010-12-22 19:36 ` Krzysztof Halasa
2010-12-23 3:26 ` Jean-Christophe PLAGNIOL-VILLARD
2010-12-23 11:42 ` Krzysztof Halasa
2010-12-22 19:13 ` Krzysztof Halasa
2010-12-20 23:08 ` [PATCH 11] Silence few warnings Krzysztof Halasa
2010-12-20 23:10 ` [PATCH 12] Fix NOR CFI flash driver to work on big endian systems Krzysztof Halasa
2010-12-22 1:01 ` Jean-Christophe PLAGNIOL-VILLARD
2010-12-22 12:48 ` Sascha Hauer
2010-12-20 23:14 ` [PATCH 13] Fix usage of __LITTLE_ENDIAN macro Krzysztof Halasa
2010-12-21 9:17 ` my IXP4xx-related and other patches Sascha Hauer
2010-12-22 0:51 ` [PATCH 5a] Fix error handling with malloc, memalign etc. Introduce xmemalign() Krzysztof Halasa
2010-12-22 0:53 ` [PATCH 6a] ARM: support big/little endian switching in "bootz" Krzysztof Halasa
2010-12-22 0:55 ` [PATCH 10a] ARM: Add support for IXP4xx CPU and for Goramo Multilink router platform Krzysztof Halasa
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20101221093423.GA6017@pengutronix.de \
--to=s.hauer@pengutronix.de \
--cc=barebox@lists.infradead.org \
--cc=khc@pm.waw.pl \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox